diff --git a/notes/ewald_1D_and_2D_in_3D.lyx b/notes/ewald_1D_and_2D_in_3D.lyx index c381dfd..cbc7c5c 100644 --- a/notes/ewald_1D_and_2D_in_3D.lyx +++ b/notes/ewald_1D_and_2D_in_3D.lyx @@ -35,7 +35,7 @@ \paperfontsize 10 \spacing single \use_hyperref false -\papersize a3paper +\papersize a4paper \use_geometry true \use_package amsmath 1 \use_package amssymb 1 @@ -88,7 +88,7 @@ \begin_body \begin_layout Title -1D in 3D Ewald sum +1D and 2D in 3D Ewald sum \end_layout \begin_layout Standard @@ -352,9 +352,10 @@ e^{i\vect K\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left| so \begin_inset Formula -\[ -\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau -\] +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\times\\ +\times\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau +\end{multline*} \end_inset @@ -374,9 +375,12 @@ e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2} hence \begin_inset Formula \begin{align*} -\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}-n}\ud\tau}_{\Delta_{n}^{\left(d_{\Lambda}\right)}}\\ - & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n}^{\left(d_{\Lambda}\right)}}{n!}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\ - & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\times\\ + & \quad\times\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}-n}\ud\tau}_{\Delta_{n}^{\left(d_{\Lambda}\right)}}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n}^{\left(d_{\Lambda}\right)}}{n!}\times\\ + & \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\ + & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\times\\ + & \quad\times\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k} \end{align*} \end_inset @@ -387,9 +391,10 @@ If we label , we have \begin_inset Formula -\[ -\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k} -\] +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\times\\ +\times\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k} +\end{multline*} \end_inset @@ -399,9 +404,10 @@ and if we label \begin_inset Formula -\[ -\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k} -\] +\begin{multline*} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\times\\ +\times\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k}. +\end{multline*} \end_inset @@ -445,9 +451,10 @@ noprefix "false" . So \begin_inset Formula -\[ -\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. -\] +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\times\\ +\times\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. +\end{multline*} \end_inset @@ -518,17 +525,19 @@ S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). Applying rearrangement, \begin_inset Formula -\[ -\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}, -\] +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\times\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}, +\end{multline*} \end_inset -or replacing the anles with their original definition, +or replacing the angles with their original definition, \begin_inset Formula -\[ -\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}, -\] +\begin{multline*} +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\times\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}, +\end{multline*} \end_inset @@ -542,9 +551,10 @@ and if we want a and replace all spherical harmonics with their dual counterparts: \begin_inset Formula -\[ -\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ushD lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}, -\] +\begin{multline*} +\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\times\\ +\times\sum_{m=-l}^{l}\ushD lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}, +\end{multline*} \end_inset @@ -558,9 +568,10 @@ duality is interchangeable, \begin_inset Formula -\[ -\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\underbrace{\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}}_{\equiv A_{l',l,m',m,n}^{\left(d_{\Lambda}\right)}}. -\] +\begin{multline*} +\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\times\\ +\times\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\underbrace{\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2n-l'+l}}_{\equiv A_{l',l,m',m,n}^{\left(d_{\Lambda}\right)}}. +\end{multline*} \end_inset diff --git a/notes/ewald_1D_in_3D.lyx b/notes/ewald_1D_in_3D.lyx index 75ca080..1ac233b 100644 --- a/notes/ewald_1D_in_3D.lyx +++ b/notes/ewald_1D_in_3D.lyx @@ -394,13 +394,13 @@ If we label \end_inset and if we label -\begin_inset Formula $\left|\vect r\right|\sin\theta\equiv\left|\vect r_{\bot}\right|$ +\begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$ \end_inset \begin_inset Formula \[ -\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{2n-k}\left(\cos\varphi\right)^{k} +\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k} \] \end_inset @@ -446,7 +446,7 @@ noprefix "false" So \begin_inset Formula \[ -\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{k}. +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}. \] \end_inset @@ -519,7 +519,7 @@ S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l). Applying rearrangement, \begin_inset Formula \[ -\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}. +\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}. \] \end_inset @@ -570,6 +570,10 @@ status open \begin_inset Formula $\varphi=\phi-\Phi$ \end_inset +, and +\begin_inset Formula $\vartheta=\theta$ +\end_inset + . Also, in this convention \begin_inset Formula $\ush lm\left(\uvec K\right)=0$ @@ -626,6 +630,46 @@ The asimuthal integral evaluates to ). That eliminates one of the two remaining (finite) sums. + We are left with the polar integral +\begin_inset Formula +\[ +\int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l} +\] + +\end_inset + +for which I couldn't find an explicit form yet. +\end_layout + +\begin_layout Section +X-aligned lattice +\end_layout + +\begin_layout Standard +If we instead set +\begin_inset Formula $\vect s_{\bot}=\uvec z\left|\vect s_{\bot}\right|\cos\Theta+\uvec y\left|\vect s_{\bot}\right|\sin\Theta$ +\end_inset + +, +\begin_inset Formula $\vect r_{\bot}=\uvec z\left|\vect r_{\bot}\right|\cos\theta+\uvec y\left|\vect r_{\bot}\right|\sin\theta=\uvec z\left|\vect r\right|\cos\theta+\uvec y\left|\vect r\right|\sin\theta\sin\phi$ +\end_inset + +, we have +\begin_inset Formula $\vartheta=\Theta-\theta$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k} +\] + +\end_inset + + \end_layout \begin_layout Standard