Single particle scattering done
Former-commit-id: c10e7db98d7f8c2eacbb8c7ef818371c61d2a7f4
This commit is contained in:
parent
80ea82a33f
commit
b14e776c34
|
@ -94,36 +94,6 @@
|
|||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Subsection
|
||||
Dual vector spherical harmonics
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For evaluation of expansion coefficients of incident fields, it is useful
|
||||
to introduce „dual“ vector spherical harmonics
|
||||
\begin_inset Formula $\vshD{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
defined by duality relation
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
(complex conjugation not implied in the dot product here).
|
||||
In our convention, we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Translation operators
|
||||
\end_layout
|
||||
|
@ -440,39 +410,6 @@ better wording
|
|||
Plane wave expansion coefficients
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A transversal (
|
||||
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
|
||||
\end_inset
|
||||
|
||||
) plane wave propagating in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
with (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
can be expanded into regular VSWFs [REF KRIS]
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Multiple-scattering problem
|
||||
\end_layout
|
||||
|
@ -489,78 +426,7 @@ Multiple-scattering problem
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Power transport
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Radiated power
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.3"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Cross-sections (single-particle)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Assuming a non-lossy background medium, extinction, scattering and absorption
|
||||
cross sections of a single scatterer irradiated by a plane wave propagating
|
||||
in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
and (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.8.2"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
|
||||
\end_inset
|
||||
|
||||
is the vector of plane wave expansion coefficients as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:plane wave expansion"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
Cross-sections (many scatterers)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -516,9 +516,9 @@ doplnit frekvence a polohy
|
|||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).
|
||||
\]
|
||||
\begin{equation}
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).\label{eq:E field expansion}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -600,6 +600,19 @@ noprefix "false"
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TOOD H-field expansion here?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
@ -690,6 +703,16 @@ The magnitude of the
|
|||
\end_inset
|
||||
|
||||
will also be negligible.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO when it will not be negligible
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -711,7 +734,223 @@ A rule of thumb to choose the
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Absorbed power
|
||||
Power transport
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For convenience, let us introduce a short-hand matrix notation for the expansion
|
||||
coefficients and related quantities, so that we do not need to write the
|
||||
indices explicitly; so for example, eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
would be written as
|
||||
\begin_inset Formula $\outcoeffp{}=T\rcoeffp{}$
|
||||
\end_inset
|
||||
|
||||
, where
|
||||
\begin_inset Formula $\rcoeffp{},\outcoeffp{}$
|
||||
\end_inset
|
||||
|
||||
are column vectors with the expansion coefficients.
|
||||
Transposed and complex-conjugated matrices are labeled with the
|
||||
\begin_inset Formula $\dagger$
|
||||
\end_inset
|
||||
|
||||
superscript.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With this notation, we state an important result about power transport,
|
||||
derivation of which can be found in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.3"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Let the field in
|
||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
have expansion as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:E field expansion"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Then the net power transported from
|
||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
via by electromagnetic radiation is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
In realistic scattering setups, power is transferred by radiation into
|
||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
and absorbed by the enclosed scatterer, so
|
||||
\begin_inset Formula $P$
|
||||
\end_inset
|
||||
|
||||
is negative and its magnitude equals to power absorbed by the scatterer.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Plane wave expansion
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In many scattering problems considered in practice, the driving field is
|
||||
a plane wave.
|
||||
A transversal (
|
||||
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
|
||||
\end_inset
|
||||
|
||||
) plane wave propagating in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
with (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
can be expanded into regular VSWFs [REF KRIS] as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vshD{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
are the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
dual
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
vector spherical harmonics defined by duality relation with the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
usual
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
vector spherical harmonics
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
(complex conjugation not implied in the dot product here).
|
||||
In our convention, we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Cross-sections (single-particle)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
With the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix and expansion coefficients of plane waves in hand, we can state
|
||||
the expressions for cross-sections of a single scatterer.
|
||||
Assuming a non-lossy background medium, extinction, scattering and absorption
|
||||
cross sections of a single scatterer irradiated by a plane wave propagating
|
||||
in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
and (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.8.2"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
|
||||
\end_inset
|
||||
|
||||
is the vector of plane wave expansion coefficients as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:plane wave expansion"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
|
Loading…
Reference in New Issue