WIP finite lattice
Former-commit-id: 0a8c5e45ffb0ee03b0867ba483c3a9960405f0af
This commit is contained in:
parent
ecda105d49
commit
b259bd46b4
|
@ -41,11 +41,11 @@
|
|||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 2
|
||||
\use_package amssymb 2
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 2
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
|
@ -158,12 +158,7 @@
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\spharm}[2]{Y_{#1,#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ush}[2]{\spharm{#1}{#2}}
|
||||
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -237,66 +232,6 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\transop}{S}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfr}[3]{\vect{\vect v}_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfs}[3]{\vect{\vect u}_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vspharm}[3]{\vect A_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\uvec}[1]{\vect{\hat{#1}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffs}{f}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffsi}[3]{\coeffs_{#1#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffr}{a}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffri}[3]{\coeffr_{#1#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffrip}[4]{\coeffr_{#1}^{#2,#3,#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffripext}[4]{\coeffr_{\mathrm{ext}#1}^{#2,#3,#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
|
@ -505,16 +440,6 @@ filename "intro.lyx"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "finite-old.lyx"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -535,16 +460,6 @@ filename "infinite.lyx"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "infinite-old.lyx"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -555,16 +470,6 @@ filename "examples.lyx"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "comparison.lyx"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -81,13 +81,6 @@
|
|||
|
||||
\begin_layout Section
|
||||
Applications
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Applications"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
#LyX 2.3 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 544
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
|
@ -9,16 +11,18 @@
|
|||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_roman "default" "TeX Gyre Pagella"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\output_sync 0
|
||||
|
@ -58,6 +62,7 @@
|
|||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
|
@ -66,7 +71,10 @@
|
|||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style swedish
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
|
@ -81,13 +89,6 @@
|
|||
|
||||
\begin_layout Section
|
||||
Finite systems
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Finite"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
@ -95,6 +96,10 @@ name "sec:Finite"
|
|||
\lang english
|
||||
motivation (classes of problems that this can solve: response to external
|
||||
radiation, resonances, ...)
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -102,6 +107,10 @@ motivation (classes of problems that this can solve: response to external
|
|||
|
||||
\lang english
|
||||
theory
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -109,6 +118,10 @@ theory
|
|||
|
||||
\lang english
|
||||
T-matrix definition, basics
|
||||
\begin_inset Separator latexpar
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
|
@ -143,12 +156,14 @@ Motivation
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
The basic idea of MSTMM consists in expansion of electromagnetic field around
|
||||
the scatterers into vector spherical vector wavefunctions (VSWFs), solving
|
||||
the individual scattering in terms of the VSWF basis, and re-expanding
|
||||
|
||||
The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
||||
incident onto a scatterer is expanded into a vector spherical wavefunction
|
||||
(VSWF) basis in which the single scattering problem is solved, and the
|
||||
scattered field is then re-expanded into VSWFs centered at the other scatterers.
|
||||
Repeating the same procedure with all (pairs of) scatterers yields a set
|
||||
of linear equations, solution of which gives the coefficients of the scattered
|
||||
field in the VSWF bases.
|
||||
However,
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -175,10 +190,6 @@ ity
|
|||
|
||||
and magnetic permeability
|
||||
\begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$
|
||||
\end_inset
|
||||
|
||||
depending only on (angular) frequency
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
, and that the whole system is linear, i.e.
|
||||
|
@ -189,7 +200,7 @@ ity
|
|||
\end_inset
|
||||
|
||||
must satisfy the homogeneous vector Helmholtz equation
|
||||
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0$
|
||||
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0$
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -206,44 +217,16 @@ todo define
|
|||
|
||||
\end_inset
|
||||
|
||||
with wavenumber
|
||||
\begin_inset Formula $k=\omega\sqrt{\mu\epsilon}/c_{0}$
|
||||
with
|
||||
\begin_inset Formula $k=TODO$
|
||||
\end_inset
|
||||
|
||||
, and transversality condition
|
||||
\begin_inset Formula $\nabla\cdot\vect{\Psi}\left(\vect r,\omega\right)=0$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "jackson_classical_1998"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
[TODO more specific REF Jackson?]
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\lang english
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||
[TODO REF Jackson?].
|
||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
Throughout this text, we will use the same normalisation conventions as
|
||||
|
@ -251,126 +234,19 @@ Throughout this text, we will use the same normalisation conventions as
|
|||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "kristensson_scattering_2016"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
|
||||
\lang english
|
||||
Spherical waves
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Inside a ball
|
||||
\begin_inset Formula $B_{R}\left(\vect{r'}\right)\subset\medium$
|
||||
\end_inset
|
||||
|
||||
with radius
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
centered at
|
||||
\begin_inset Formula $\vect{r'}$
|
||||
\end_inset
|
||||
|
||||
, the transversal solutions of the vector Helmholtz equation can be expressed
|
||||
in the basis of the regular transversal
|
||||
\emph on
|
||||
vector spherical wavefunctions
|
||||
\emph default
|
||||
(VSWFs)
|
||||
\begin_inset Formula $\vswfr{\tau}lm\left(k\left(\vect r-\vect{r'}\right)\right)$
|
||||
\end_inset
|
||||
|
||||
, which are found by separation of variables in spherical coordinates.
|
||||
There is a large variety of VSWF normalisation and phase conventions in
|
||||
the literature (and existing software), which can lead to great confusion
|
||||
using them.
|
||||
Throughout this text, we use the following convention, adopted from [Kristensso
|
||||
n 2014]:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\vswfr 1lm\left(k\vect r\right) & = & j_{l}\left(kr\right)\vspharm 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfr 2lm\left(k\vect r\right) & = & \frac{1}{kr}\frac{\ud\left(kr\, j_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vspharm 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vspharm 3lm\left(\uvec r\right),\label{eq:regular vswf}\\
|
||||
& & \qquad l=1,2,\dots;\, m=-l,-l+1,\dots,l;\nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where we separated the position variable into its magnitude
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
and a unit vector
|
||||
\begin_inset Formula $\uvec r$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\vect r=r\uvec r$
|
||||
\end_inset
|
||||
|
||||
, the
|
||||
\emph on
|
||||
vector spherical harmonics
|
||||
\emph default
|
||||
|
||||
\begin_inset Formula $\vspharm{\sigma}lm$
|
||||
\end_inset
|
||||
|
||||
are defined as
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\vspharm 1lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\nabla\spharm lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||
\vspharm 2lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\spharm lm\left(\uvec r\right),\label{eq:vspharm}\\
|
||||
\vspharm 2lm\left(\uvec r\right) & = & \uvec r\spharm lm\left(\uvec r\right),\nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
and for the scalar spherical harmonics
|
||||
\begin_inset Formula $\spharm lm$
|
||||
\end_inset
|
||||
|
||||
we use the convention from [REF DLMF 14.30.1],
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\spharm lm\left(\uvec r\right)=\spharm lm\left(\theta,\phi\right)=\left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\mathsf{P}_{l}^{m}\left(\cos\theta\right),\label{eq:spharm}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where the Condon-Shortley phase factor
|
||||
\begin_inset Formula $\left(-1\right)^{m}$
|
||||
\end_inset
|
||||
|
||||
is already included in the definition of Ferrers function
|
||||
\begin_inset Formula $\mathsf{P}_{l}^{m}\left(\cos\theta\right)$
|
||||
\end_inset
|
||||
|
||||
[as in DLMF 14].
|
||||
The main reason for this choice of VSWF
|
||||
\emph on
|
||||
normalisation
|
||||
\emph default
|
||||
is that it leads to simple formulae for power transport and scattering
|
||||
cross sections without additional
|
||||
\begin_inset Formula $l,m$
|
||||
\end_inset
|
||||
|
||||
-dependent factors, see below.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
|
|
|
@ -81,13 +81,6 @@
|
|||
|
||||
\begin_layout Section
|
||||
Infinite periodic systems
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Infinite"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -197,9 +190,9 @@ and we assume periodic solution
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect0α\leftarrow\vect bβ})A_{\vect0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect0\beta}\left(\vect k\right) & = & 0.
|
||||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
|
||||
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
@ -215,7 +208,7 @@ lattice Fourier transform
|
|||
of the translation operator,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -240,7 +233,7 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
is the asymptotic behaviour of the translation operator,
|
||||
\begin_inset Formula $S_{\vect0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||||
\end_inset
|
||||
|
||||
that makes the convergence of the sum quite problematic for any
|
||||
|
@ -337,7 +330,7 @@ translation operator for spherical waves originating in
|
|||
\end_inset
|
||||
|
||||
is in fact a function of a single 3d argument,
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -351,7 +344,7 @@ reference "eq:W integral"
|
|||
can be rewritten as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0))\left(\vect k\right)}
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -376,10 +369,10 @@ reference "eq:Dirac comb uaFt"
|
|||
for the Fourier transform of Dirac comb)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -485,8 +478,8 @@ reference "eq:W sum in reciprocal space"
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -81,159 +81,6 @@
|
|||
|
||||
\begin_layout Section
|
||||
Introduction
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Introduction"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The problem of electromagnetic response of a system consisting of many compact
|
||||
scatterers in various geometries, and its numerical solution, is relevant
|
||||
to many branches of nanophotonics (TODO refs).
|
||||
The most commonly used general approaches used in computational electrodynamics
|
||||
, such as the finite difference time domain (FDTD) method or the finite
|
||||
element method (FEM), are very often unsuitable for simulating systems
|
||||
with larger number of scatterers due to their computational complexity.
|
||||
Therefore, a common (frequency-domain) approach to get an approximate solution
|
||||
of the scattering problem for many small particles has been the coupled
|
||||
dipole approximation (CDA) where individual scatterers are reduced to electric
|
||||
dipoles (characterised by a polarisability tensor) and coupled to each
|
||||
other through Green's functions.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
CDA is easy to implement and has favorable computational complexity but
|
||||
suffers from at least two fundamental drawbacks.
|
||||
The obvious one is that the dipole approximation is too rough for particles
|
||||
with diameter larger than a small fraction of the wavelength.
|
||||
The other one, more subtle, manifests itself in photonic crystal-like structure
|
||||
s used in nanophotonics: there are modes in which the particles' electric
|
||||
dipole moments completely vanish due to symmetry, regardless of how small
|
||||
the particles are, and the excitations have quadrupolar or higher-degree
|
||||
multipolar character.
|
||||
These modes typically appear at the band edges where interesting phenomena
|
||||
such as lasing or Bose-Einstein condensation have been observed – and CDA
|
||||
by definition fails to capture such modes.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The natural way to overcome both limitations of CDA mentioned above is to
|
||||
include higher multipoles into account.
|
||||
Instead of polarisability tensor, the scattering properties of an individual
|
||||
particle are then described a more general
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, and different particles' multipole excitations are coupled together
|
||||
via translation operators, a generalisation of the Green's functions in
|
||||
CDA.
|
||||
This is the idea behind the
|
||||
\emph on
|
||||
multiple-scattering
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix method
|
||||
\emph default
|
||||
(MSTMM) (TODO a.k.a something??), and it has been implemented previously for
|
||||
a limited subset of problems (TODO refs and list the limitations of the
|
||||
available).
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO přestože blablaba, moc se to nepoužívalo, protože je težké udělat to
|
||||
správně.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Due to the limitations of the existing available codes, we have been developing
|
||||
our own implementation of MSTMM, which we have used in several previous
|
||||
works studying various physical phenomena in plasmonic nanoarrays (TODO
|
||||
examples with refs).
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Hereby we release our MSTMM implementation, the
|
||||
\emph on
|
||||
QPMS Photonic Multiple Scattering
|
||||
\emph default
|
||||
suite, as an open source software under the GNU General Public License
|
||||
version 3.
|
||||
(TODO refs to the code repositories.) QPMS allows for linear optics simulations
|
||||
of arbitrary sets of compact scatterers in isotropic media.
|
||||
The features include computations of electromagnetic response to external
|
||||
driving, the related cross sections, and finding resonances of finite structure
|
||||
s.
|
||||
Moreover, in QPMS we extensively employ group theory to exploit the physical
|
||||
symmetries of the system to further reduce the demands on computational
|
||||
resources, enabling to simulate even larger systems.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO put a specific example here of how large system we are able to simulate?)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Although systems of large
|
||||
\emph on
|
||||
finite
|
||||
\emph default
|
||||
number of scatterers are the area where MSTMM excels the most—simply because
|
||||
other methods fail due to their computational complexity—we also extended
|
||||
the method onto infinite periodic systems (photonic crystals); this can
|
||||
be used for quickly evaluating dispersions of such structures and also
|
||||
their topological invariants (TODO).
|
||||
The QPMS suite contains a core C library, Python bindings and several utilities
|
||||
for routine computations, such as TODO.
|
||||
It includes extensive Doxygen documentation, together with description
|
||||
of the API, making extending and customising the code easy.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The current paper is organised as follows: Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Finite"
|
||||
|
||||
\end_inset
|
||||
|
||||
is devoted to MSTMM theory for finite systems, in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Infinite"
|
||||
|
||||
\end_inset
|
||||
|
||||
we develop the theory for infinite periodic structures.
|
||||
Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Applications"
|
||||
|
||||
\end_inset
|
||||
|
||||
demonstrates some basic practical results that can be obtained using QPMS.
|
||||
Finally, in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Comparison"
|
||||
|
||||
\end_inset
|
||||
|
||||
we comment on the computational complexity of MSTMM in comparison to other
|
||||
methods.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue