Fix derivatives in integration contours.
Former-commit-id: 7575a69a82eb19126aaac9aede9f170815b6015a
This commit is contained in:
parent
2fcc6282fa
commit
b3c3eeb2a2
|
@ -75,7 +75,7 @@ beyn_contour_t *beyn_contour_ellipse(complex double centre, double rRe, double r
|
||||||
double t = i*2*M_PI/n;
|
double t = i*2*M_PI/n;
|
||||||
double st = sin(t), ct = cos(t);
|
double st = sin(t), ct = cos(t);
|
||||||
c->z_dz[i][0] = centre + ct*rRe + I*st*rIm;
|
c->z_dz[i][0] = centre + ct*rRe + I*st*rIm;
|
||||||
c->z_dz[i][1] = (I*rRe*st + rIm*ct) / n;
|
c->z_dz[i][1] = (-rRe*st + I*rIm*ct) * (2*M_PI / n);
|
||||||
}
|
}
|
||||||
// We hide the half-axes metadata after the discretisation points.
|
// We hide the half-axes metadata after the discretisation points.
|
||||||
c->z_dz[n][0] = rRe;
|
c->z_dz[n][0] = rRe;
|
||||||
|
@ -121,7 +121,7 @@ beyn_contour_t *beyn_contour_halfellipse(complex double centre, double rRe,
|
||||||
double t = (i+0.5)*M_PI/narc;
|
double t = (i+0.5)*M_PI/narc;
|
||||||
double st = sin(t), ct = cos(t);
|
double st = sin(t), ct = cos(t);
|
||||||
c->z_dz[i][0] = centre + faktor*(ct*l + I*st*h);
|
c->z_dz[i][0] = centre + faktor*(ct*l + I*st*h);
|
||||||
c->z_dz[i][1] = faktor * (I*l*st + h*ct) / narc;
|
c->z_dz[i][1] = faktor * (-l*st + I*h*ct) * (M_PI / narc);
|
||||||
}
|
}
|
||||||
for(size_t i = 0; i < nline; ++i) {
|
for(size_t i = 0; i < nline; ++i) {
|
||||||
double t = 0.5 * (1 - (double) nline) + i;
|
double t = 0.5 * (1 - (double) nline) + i;
|
||||||
|
@ -146,7 +146,7 @@ beyn_contour_t *beyn_contour_halfellipse(complex double centre, double rRe,
|
||||||
default: QPMS_WTF;
|
default: QPMS_WTF;
|
||||||
}
|
}
|
||||||
c->z_dz[narc + i][0] = z;
|
c->z_dz[narc + i][0] = z;
|
||||||
c->z_dz[narc + i][1] = faktor * l / narc;
|
c->z_dz[narc + i][1] = faktor * l / nline;
|
||||||
}
|
}
|
||||||
// We hide the half-axes metadata after the discretisation points.
|
// We hide the half-axes metadata after the discretisation points.
|
||||||
c->z_dz[n][0] = rRe;
|
c->z_dz[n][0] = rRe;
|
||||||
|
|
Loading…
Reference in New Issue