Alternative implementation of qpms_scatsys_scattered_E()
For testing purposes. Seems to work OK. Former-commit-id: 897e687d27dbd81b2aaac17fb8f19bc4257dc887
This commit is contained in:
parent
aa82b3a01a
commit
b3d15a1bb7
|
@ -710,25 +710,29 @@ cdef class ScatteringSystem:
|
|||
|
||||
return retdict
|
||||
|
||||
def scattered_E(self, cdouble wavenumber, scatcoeffvector_full, evalpos):
|
||||
evalpos = np.array(evalpos, copy=False)
|
||||
cdef np.ndarray evalpos_a = evalpos
|
||||
cdef np.ndarray[dtype=complex] scv = np.array(scatcoeffvector_full, copy=False)
|
||||
cdef cdouble[::1] scv_view = scv
|
||||
def scattered_E(self, cdouble wavenumber, scatcoeffvector_full, evalpos, bint alt=False):
|
||||
evalpos = np.array(evalpos, dtype=float, copy=False)
|
||||
if evalpos.shape[-1] != 3:
|
||||
raise ValueError("Last dimension of evalpos has to be 3")
|
||||
cdef np.ndarray[complex] results = np.empty(evalpos.shape, dtype=complex)
|
||||
cdef np.ndarray[double,ndim=2] evalpos_a = evalpos.reshape(-1,3)
|
||||
cdef np.ndarray[dtype=complex, ndim=1] scv = np.array(scatcoeffvector_full, copy=False)
|
||||
cdef cdouble[::1] scv_view = scv
|
||||
cdef np.ndarray[complex, ndim=2] results = np.empty((evalpos_a.shape[0],3), dtype=complex)
|
||||
cdef ccart3_t res
|
||||
cdef cart3_t pos
|
||||
for i in np.ndindex(evalpos.shape[:-1]):
|
||||
cdef size_t i
|
||||
for i in range(evalpos_a.shape[0]):
|
||||
pos.x = evalpos_a[i,0]
|
||||
pos.y = evalpos_a[i,1]
|
||||
pos.z = evalpos_a[i,2]
|
||||
res = qpms_scatsys_scattered_E(self.s, wavenumber, &scv_view[0], pos)
|
||||
if alt:
|
||||
res = qpms_scatsys_scattered_E__alt(self.s, wavenumber, &scv_view[0], pos)
|
||||
else:
|
||||
res = qpms_scatsys_scattered_E(self.s, wavenumber, &scv_view[0], pos)
|
||||
results[i,0] = res.x
|
||||
results[i,1] = res.y
|
||||
results[i,2] = res.z
|
||||
return results
|
||||
return results.reshape(evalpos.shape)
|
||||
|
||||
def empty_lattice_modes_xy(EpsMu epsmu, reciprocal_basis, wavevector, double maxomega):
|
||||
'''Empty (2D, xy-plane) lattice mode (diffraction order) frequencies of a non-dispersive medium.
|
||||
|
@ -863,25 +867,29 @@ cdef class _ScatteringSystemAtOmega:
|
|||
def translation_matrix_full(self, blochvector = None):
|
||||
return self.ss_pyref.translation_matrix_full(wavenumber=self.wavenumber, blochvector=blochvector)
|
||||
|
||||
def scattered_E(self, scatcoeffvector_full, evalpos):
|
||||
evalpos = np.array(evalpos, copy=False)
|
||||
cdef np.ndarray evalpos_a = evalpos
|
||||
cdef np.ndarray[dtype=complex] scv = np.array(scatcoeffvector_full, copy=False)
|
||||
cdef cdouble[::1] scv_view = scv
|
||||
def scattered_E(self, scatcoeffvector_full, evalpos, bint alt=False):
|
||||
evalpos = np.array(evalpos, dtype=float, copy=False)
|
||||
if evalpos.shape[-1] != 3:
|
||||
raise ValueError("Last dimension of evalpos has to be 3")
|
||||
cdef np.ndarray[complex] results = np.empty(evalpos.shape, dtype=complex)
|
||||
cdef np.ndarray[double,ndim=2] evalpos_a = evalpos.reshape(-1,3)
|
||||
cdef np.ndarray[dtype=complex, ndim=1] scv = np.array(scatcoeffvector_full, copy=False)
|
||||
cdef cdouble[::1] scv_view = scv
|
||||
cdef np.ndarray[complex, ndim=2] results = np.empty((evalpos_a.shape[0],3), dtype=complex)
|
||||
cdef ccart3_t res
|
||||
cdef cart3_t pos
|
||||
for i in np.ndindex(evalpos.shape[:-1]):
|
||||
cdef size_t i
|
||||
for i in range(evalpos_a.shape[0]):
|
||||
pos.x = evalpos_a[i,0]
|
||||
pos.y = evalpos_a[i,1]
|
||||
pos.z = evalpos_a[i,2]
|
||||
res = qpms_scatsysw_scattered_E(self.ssw, &scv_view[0], pos)
|
||||
if alt:
|
||||
res = qpms_scatsysw_scattered_E__alt(self.ssw, &scv_view[0], pos)
|
||||
else:
|
||||
res = qpms_scatsysw_scattered_E(self.ssw, &scv_view[0], pos)
|
||||
results[i,0] = res.x
|
||||
results[i,1] = res.y
|
||||
results[i,2] = res.z
|
||||
return results
|
||||
return results.reshape(evalpos.shape)
|
||||
|
||||
|
||||
cdef class ScatteringMatrix:
|
||||
|
|
|
@ -629,6 +629,10 @@ cdef extern from "scatsystem.h":
|
|||
const cdouble *f_excitation_vector_full, cart3_t where)
|
||||
ccart3_t qpms_scatsysw_scattered_E(const qpms_scatsys_at_omega_t *ssw,
|
||||
const cdouble *f_excitation_vector_full, cart3_t where)
|
||||
ccart3_t qpms_scatsys_scattered_E__alt(const qpms_scatsys_t *ss, cdouble wavenumber,
|
||||
const cdouble *f_excitation_vector_full, cart3_t where)
|
||||
ccart3_t qpms_scatsysw_scattered_E__alt(const qpms_scatsys_at_omega_t *ssw,
|
||||
const cdouble *f_excitation_vector_full, cart3_t where)
|
||||
|
||||
cdef extern from "ewald.h":
|
||||
struct qpms_csf_result:
|
||||
|
|
|
@ -2018,6 +2018,69 @@ ccart3_t qpms_scatsysw_scattered_E(const qpms_scatsys_at_omega_t *ssw,
|
|||
cvf, where);
|
||||
}
|
||||
|
||||
// Alternative implementation, using translation operator and regular dipole waves at zero
|
||||
ccart3_t qpms_scatsys_scattered_E__alt(const qpms_scatsys_t *ss,
|
||||
const complex double k,
|
||||
const complex double *cvf,
|
||||
const cart3_t where
|
||||
) {
|
||||
QPMS_UNTESTED;
|
||||
ccart3_t res = {0,0,0};
|
||||
ccart3_t res_kc = {0,0,0}; // kahan sum compensation
|
||||
|
||||
// bspec containing only electric dipoles
|
||||
const qpms_vswf_set_spec_t dipspec = {
|
||||
.n = 3,
|
||||
.ilist = (qpms_uvswfi_t[]){
|
||||
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, -1, 1),
|
||||
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, 0, 1),
|
||||
qpms_tmn2uvswfi(QPMS_VSWF_ELECTRIC, +1, 1),
|
||||
},
|
||||
.lMax=1, .lMax_M=0, .lMax_N=1, .lMax_L=-1,
|
||||
.capacity=0,
|
||||
.norm = ss->c->normalisation,
|
||||
};
|
||||
|
||||
ccart3_t regdipoles_0[3]; {
|
||||
const sph_t origin_sph = {.r = 0, .theta = M_PI_2, .phi=0}; // Should work with any theta/phi (TESTWORTHY)
|
||||
csphvec_t regdipoles_0_sph[3];
|
||||
QPMS_ENSURE_SUCCESS(qpms_uvswf_fill(regdipoles_0_sph, &dipspec,
|
||||
sph2csph(origin_sph), QPMS_BESSEL_REGULAR));
|
||||
for(int i = 0; i < 3; ++i)
|
||||
regdipoles_0[i] = csphvec2ccart(regdipoles_0_sph[i], origin_sph);
|
||||
}
|
||||
|
||||
complex double *s; // Translation matrix
|
||||
QPMS_CRASHING_MALLOC(s, ss->max_bspecn * sizeof(*s) * dipspec.n);
|
||||
|
||||
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) {
|
||||
const qpms_vswf_set_spec_t *bspec = qpms_ss_bspec_pi(ss, pi);
|
||||
const cart3_t particle_pos = ss->p[pi].pos;
|
||||
const complex double *particle_cv = cvf + ss->fecv_pstarts[pi];
|
||||
|
||||
const cart3_t origin_cart = {0, 0, 0};
|
||||
|
||||
QPMS_ENSURE_SUCCESS(qpms_trans_calculator_get_trans_array_lc3p(
|
||||
ss->c, s, &dipspec, 1, bspec, 3, k, particle_pos, where,
|
||||
QPMS_HANKEL_PLUS));
|
||||
|
||||
for(size_t i = 0; i < bspec->n; ++i)
|
||||
for(size_t j = 0; j < 3; ++j){
|
||||
ccart3_t summand = ccart3_scale(particle_cv[i] * s[3*i+j], regdipoles_0[j]);
|
||||
ckahanadd(&(res.x), &(res_kc.x), summand.x);
|
||||
ckahanadd(&(res.y), &(res_kc.y), summand.y);
|
||||
ckahanadd(&(res.z), &(res_kc.z), summand.z);
|
||||
}
|
||||
}
|
||||
free(s);
|
||||
return res;
|
||||
}
|
||||
|
||||
ccart3_t qpms_scatsysw_scattered_E__alt(const qpms_scatsys_at_omega_t *ssw,
|
||||
const complex double *cvf, const cart3_t where) {
|
||||
return qpms_scatsys_scattered_E__alt(ssw->ss, ssw->wavenumber,
|
||||
cvf, where);
|
||||
}
|
||||
|
||||
#if 0
|
||||
ccart3_t qpms_scatsys_scattered_E_irrep(const qpms_scatsys_t *ss,
|
||||
|
|
|
@ -727,6 +727,37 @@ ccart3_t qpms_scatsysw_scattered_E(
|
|||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates scattered electric field at a point, given a full vector of scattered field coefficients.
|
||||
/**
|
||||
* This is an alternative implementation of qpms_scatsys_scattered_E(), and should give the same results
|
||||
* up to rounding errors.
|
||||
*
|
||||
* \return Complex electric field at the point defined by \a evalpoint.
|
||||
*
|
||||
* \see qpms_scatsys_scattered_E()
|
||||
*/
|
||||
ccart3_t qpms_scatsys_scattered_E__alt(
|
||||
const qpms_scatsys_t *ss,
|
||||
complex double wavenumber, ///< Wavenumber of the background medium.
|
||||
const complex double *scatcoeff_full, ///< Full vector of the scattered field coefficients \f$ \wckcout \f$.
|
||||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates scattered electric field at a point, given a full vector of scattered field coefficients.
|
||||
/**
|
||||
* This is an alternative implementation of qpms_scatsys_scattered_E(), and should give the same results
|
||||
* up to rounding errors.
|
||||
*
|
||||
* \return Complex electric field at the point defined by \a evalpoint.
|
||||
*
|
||||
* \see qpms_scatsysw_scattered_E()
|
||||
*/
|
||||
ccart3_t qpms_scatsysw_scattered_E__alt(
|
||||
const qpms_scatsys_at_omega_t *ssw,
|
||||
const complex double *scatcoeff_full, ///< Full vector of the scattered field coefficients \f$ \wckcout \f$.
|
||||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
#if 0
|
||||
/** Evaluates partial scattered fields (corresponding to a given irrep-reduced excitation vector)
|
||||
* at a given point.
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Tests whether direct evaluation of VSWFs gives the same result as their
|
||||
representation in terms of translation operators and regular electric dipole
|
||||
waves at origin
|
||||
"""
|
||||
|
||||
from qpms import Particle, CTMatrix, lorentz_drude, EpsMuGenerator, TMatrixGenerator, BaseSpec, FinitePointGroup, ScatteringSystem, TMatrixInterpolator, EpsMu, dbgmsg_enable, dbgmsg_disable, dbgmsg_active, BesselType,eV, hbar
|
||||
from qpms.symmetries import point_group_info
|
||||
import numpy as np
|
||||
eh = eV/hbar
|
||||
np.random.seed(666)
|
||||
dbgmsg_enable(2)
|
||||
|
||||
part_radius = 80e-9
|
||||
p = 1580e-9
|
||||
|
||||
sym = FinitePointGroup(point_group_info['D4h'])
|
||||
bspec1 = BaseSpec(lMax=3)
|
||||
medium=EpsMuGenerator(EpsMu(1.52**2))
|
||||
t1 = TMatrixGenerator.sphere(medium, EpsMuGenerator(lorentz_drude['Au']), r=part_radius)
|
||||
p1 = Particle((0,0,0),t1,bspec=bspec1)
|
||||
ss, ssw = ScatteringSystem.create([p1], EpsMuGenerator(EpsMu(1.52**2)), 1.4*eh, sym)
|
||||
|
||||
|
||||
points = np.random.random((100,3)) * p
|
||||
points = points[np.linalg.norm(points, axis=-1) > part_radius]
|
||||
t,l,m = bspec1.tlm()
|
||||
|
||||
fails=0
|
||||
|
||||
for i in range(ss.fecv_size):
|
||||
fvc = np.zeros((ss.fecv_size,), dtype=complex)
|
||||
fvc[i] = 1
|
||||
|
||||
E = ssw.scattered_E(fvc, points)
|
||||
E_alt = ssw.scattered_E(fvc, points,alt=True)
|
||||
diff = abs(E-E_alt)
|
||||
reldiffavg = np.average(diff/(abs(E)+abs(E_alt)))
|
||||
fail = reldiffavg > 1e-3
|
||||
fails += fail
|
||||
|
||||
print('E' if t[i] == 2 else 'M', l[i], m[i], np.amax(diff), reldiffavg, 'FAIL!' if fail else 'OK')
|
||||
|
||||
exit(fails)
|
Loading…
Reference in New Issue