diff --git a/misc/finiterectlat-modes.py b/misc/finiterectlat-modes.py new file mode 100755 index 0000000..b62068e --- /dev/null +++ b/misc/finiterectlat-modes.py @@ -0,0 +1,115 @@ +#!/usr/bin/env python3 + +import math +from qpms.argproc import ArgParser + + +ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', ]) + +ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11) +ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance') +ap.add_argument("-T", "--residual-tolerance", type=float, default=0.) + +ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') +#ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") +#ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") +#ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") + +ap.add_argument("-f", "--centre", type=complex, required=True, help='Contour centre in eV') +ap.add_argument("--ai", type=float, default=0.05, help="Contour imaginary half-axis in eV") +ap.add_argument("--ar", type=float, default=0.05, help="Contour real half-axis in eV") +ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size") + +ap.add_argument("--irrep", type=str, nargs=1, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition") + +a=ap.parse_args() + +import logging +logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) + +Nx, Ny = a.size +px, py = a.period + +particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) +if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) +defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_n%g_L%d_c(%s±%g±%gj)eV_cn%d" % ( + particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.lMax, + str(a.centre), a.ai, a.ar, a.N) +logging.info("Default file prefix: %s" % defaultprefix) + + +import numpy as np +import qpms +from qpms.cybspec import BaseSpec +from qpms.cytmatrices import CTMatrix, TMatrixGenerator +from qpms.qpms_c import Particle +from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude +from qpms.cycommon import DebugFlags, dbgmsg_enable +from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar +from qpms.symmetries import point_group_info +eh = eV/hbar + +dbgmsg_enable(DebugFlags.INTEGRATION) + +#Particle positions +orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px +orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py + +orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) + + +bspec = BaseSpec(lMax = a.lMax) +medium = EpsMuGenerator(ap.background_epsmu) +particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])] + +sym = FinitePointGroup(point_group_info['D2h']) +logging.info("Creating scattering system object") +ss, ssw = ScatteringSystem.create(particles, medium, sym, a.centre * eh) + +if a.irrep == 'none': + iri = None # no irrep decomposition + irname = 'full' + logging.info("Not performing irrep decomposition and working with the full space of dimension %d." % ss.fecv_size) +else: + try: + iri = int(a.irrep) + except ValueError: + iri = ss.irrep_names.index(a.irrep) + irname = ss.irrep_names(iri) + logging.info("Using irrep subspace %s (iri = %d) of dimension %d." % (irname, iri, ss.saecv_sizes[iri])) + +outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" + +logging.info("Starting Beyn's algorithm") +results = ss.find_modes(iri=iri, omega_centre = a.centre*eh, omega_rr=a.ar*eh, omega_ri=a.ai*eh, contour_points=a.N, + rank_tol=a.rank_tolerance, rank_min_sel=a.min_candidates, res_tol=a.residual_tolerance) +results['inside_contour'] = inside_ellipse((results['eigval'].real, results['eigval'].imag) + (a.centre.real*eh, a.centre.imag*eh), (a.ar*eh, a.ai*eh)) +results['refractive_index_internal'] = [medium(om).n for om in results['eigval']] + +outfile = defaultprefix + (('_ir%s_%s.npz' % (str(iri), irname)) if iri is not None else '.npz') if a.output is None else a.output +np.savez(outfile, meta=vars(a), **results) +logging.info("Saved to %s" % outfile) + +exit(0) + +# TODO plots. +if a.plot or (a.plot_out is not None): + import matplotlib + matplotlib.use('pdf') + from matplotlib import pyplot as plt + + fig = plt.figure() + ax = fig.add_subplot(111) + ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$') + ax.plot(sinalpha_list, σ_scat*1e12, label='$\sigma_\mathrm{scat}$') + ax.plot(sinalpha_list, σ_abs*1e12, label='$\sigma_\mathrm{abs}$') + ax.legend() + ax.set_xlabel('$\sin\\alpha$') + ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$') + + plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out + fig.savefig(plotfile) + +exit(0) +