Simplify tr.op. expression. Scattered field in periodic system.
Former-commit-id: 0b93f3bdf78a3a3d6a9a2cf628012f80790daebd
This commit is contained in:
parent
16f12c041b
commit
b80e7607f8
|
@ -395,6 +395,11 @@ status open
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\tropcoeff}{C}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\truncated}[2]{\left[#1\right]_{l\le#2}}
|
||||
\end_inset
|
||||
|
|
|
@ -1919,10 +1919,27 @@ outside.
|
|||
\begin_layout Standard
|
||||
In our convention, the regular translation operator elements can be expressed
|
||||
explicitly as
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\
|
||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator}
|
||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator-1}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\label{eq:translation operator}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -1936,10 +1953,27 @@ and analogously the elements of the singular operator
|
|||
\end_inset
|
||||
|
||||
) in the radial part instead of the regular bessel functions,
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\
|
||||
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular}
|
||||
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular-1}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\label{eq:translation operator singular}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -2135,15 +2169,26 @@ m & -m' & m'-m
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}=\begin{cases}
|
||||
A_{lm;l'm'}^{\lambda} & \tau=\tau',\\
|
||||
B_{lm;l'm'}^{\lambda} & \tau\ne\tau',
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
C_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
||||
A_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
||||
\times\begin{pmatrix}l & l' & \lambda\\
|
||||
0 & 0 & 0
|
||||
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
||||
m & -m' & m'-m
|
||||
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\
|
||||
D_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
||||
B_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
|
||||
\times\begin{pmatrix}l & l' & \lambda-1\\
|
||||
0 & 0 & 0
|
||||
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
||||
|
@ -2222,16 +2267,6 @@ todo different notation for the complex conjugation without transposition???
|
|||
, which has to be taken into consideration when evaluating quantities such
|
||||
as absorption or scattering cross sections.
|
||||
Similarly, the full regular operators can be composed
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
better wording
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
|
||||
|
|
|
@ -140,6 +140,13 @@ Topology anoyne?
|
|||
|
||||
\begin_layout Subsection
|
||||
Formulation of the problem
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:Quasiperiodic scattering problem"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -1061,6 +1068,10 @@ W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\b
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
W_{\alpha,\tau lm;\beta,\tau l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\\
|
||||
|
@ -1070,6 +1081,19 @@ W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|+1
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k)=\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau,
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -1913,7 +1937,8 @@ Whatabout different geometries?
|
|||
|
||||
\end_inset
|
||||
|
||||
However, at greater wavelengths
|
||||
However, at larger wavelengths, TODO BLA BLA BLA which is detrimental for
|
||||
accuracy in floating point arithmetics.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -2015,14 +2040,14 @@ noprefix "false"
|
|||
Fortunately, these can be obtained easily from the expressions for the
|
||||
translation operator:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\\
|
||||
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),
|
||||
\end{align*}
|
||||
\begin{align}
|
||||
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\nonumber \\
|
||||
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
where we used eqs.
|
||||
which follows from eqs.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
@ -2048,6 +2073,102 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
vanish at origin.
|
||||
For the quasiperiodic scattering problem formulated in section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "subsec:Quasiperiodic scattering problem"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, the total electric field scattered from all the particles at point
|
||||
\begin_inset Formula $\vect r$
|
||||
\end_inset
|
||||
|
||||
located outside all the particles' circumscribing sphere reads, using eqs.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:translation operator singular"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:sigma lattice sums"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:scalar spherical wavefunctions"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\psi_{\lambda,m-m'}\left(\vect d\right),\label{eq:translation operator singular-1}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\kappa\left(\vect{R_{n}}-\vect s\right)\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right),\text{FIXME signs}\\
|
||||
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO fix signs and exponential phase factors
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue