Simplify tr.op. expression. Scattered field in periodic system.

Former-commit-id: 0b93f3bdf78a3a3d6a9a2cf628012f80790daebd
This commit is contained in:
Marek Nečada 2020-06-05 10:59:41 +03:00
parent 16f12c041b
commit b80e7607f8
3 changed files with 181 additions and 20 deletions

View File

@ -395,6 +395,11 @@ status open
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\tropcoeff}{C}
\end_inset
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\truncated}[2]{\left[#1\right]_{l\le#2}} \newcommand{\truncated}[2]{\left[#1\right]_{l\le#2}}
\end_inset \end_inset

View File

@ -1919,10 +1919,27 @@ outside.
\begin_layout Standard \begin_layout Standard
In our convention, the regular translation operator elements can be expressed In our convention, the regular translation operator elements can be expressed
explicitly as explicitly as
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula \begin_inset Formula
\begin{align} \begin{align}
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\ \tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator} \tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator-1}
\end{align}
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{align}
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\label{eq:translation operator}
\end{align} \end{align}
\end_inset \end_inset
@ -1936,10 +1953,27 @@ and analogously the elements of the singular operator
\end_inset \end_inset
) in the radial part instead of the regular bessel functions, ) in the radial part instead of the regular bessel functions,
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula \begin_inset Formula
\begin{align} \begin{align}
\trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\ \trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular} \trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular-1}
\end{align}
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{align}
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\label{eq:translation operator singular}
\end{align} \end{align}
\end_inset \end_inset
@ -2135,15 +2169,26 @@ m & -m' & m'-m
\end_inset \end_inset
\begin_inset Formula
\[
\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}=\begin{cases}
A_{lm;l'm'}^{\lambda} & \tau=\tau',\\
B_{lm;l'm'}^{\lambda} & \tau\ne\tau',
\end{cases}
\]
\end_inset
\begin_inset Formula \begin_inset Formula
\begin{multline} \begin{multline}
C_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ A_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\ \times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\ \end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\
D_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\ B_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\ \times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\ \end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
@ -2222,16 +2267,6 @@ todo different notation for the complex conjugation without transposition???
, which has to be taken into consideration when evaluating quantities such , which has to be taken into consideration when evaluating quantities such
as absorption or scattering cross sections. as absorption or scattering cross sections.
Similarly, the full regular operators can be composed Similarly, the full regular operators can be composed
\begin_inset Note Note
status open
\begin_layout Plain Layout
better wording
\end_layout
\end_inset
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition} \troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}

View File

@ -140,6 +140,13 @@ Topology anoyne?
\begin_layout Subsection \begin_layout Subsection
Formulation of the problem Formulation of the problem
\begin_inset CommandInset label
LatexCommand label
name "subsec:Quasiperiodic scattering problem"
\end_inset
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -1061,6 +1068,10 @@ W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\b
\end_inset \end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
W_{\alpha,\tau lm;\beta,\tau l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\\ W_{\alpha,\tau lm;\beta,\tau l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\\
@ -1070,6 +1081,19 @@ W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|+1
\end_inset \end_inset
\end_layout
\end_inset
\begin_inset Formula
\[
W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k)=\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau,
\]
\end_inset
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -1913,7 +1937,8 @@ Whatabout different geometries?
\end_inset \end_inset
However, at greater wavelengths However, at larger wavelengths, TODO BLA BLA BLA which is detrimental for
accuracy in floating point arithmetics.
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -2015,14 +2040,14 @@ noprefix "false"
Fortunately, these can be obtained easily from the expressions for the Fortunately, these can be obtained easily from the expressions for the
translation operator: translation operator:
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align}
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\\ \vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\nonumber \\
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right), \vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves}
\end{align*} \end{align}
\end_inset \end_inset
where we used eqs. which follows from eqs.
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand eqref LatexCommand eqref
@ -2048,6 +2073,102 @@ noprefix "false"
\end_inset \end_inset
vanish at origin. vanish at origin.
For the quasiperiodic scattering problem formulated in section
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Quasiperiodic scattering problem"
plural "false"
caps "false"
noprefix "false"
\end_inset
, the total electric field scattered from all the particles at point
\begin_inset Formula $\vect r$
\end_inset
located outside all the particles' circumscribing sphere reads, using eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator singular"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:sigma lattice sums"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:scalar spherical wavefunctions"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{align}
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\psi_{\lambda,m-m'}\left(\vect d\right),\label{eq:translation operator singular-1}
\end{align}
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\kappa\left(\vect{R_{n}}-\vect s\right)\right),\label{eq:sigma lattice sums}
\end{equation}
\end_inset
\begin_inset Formula
\begin{align*}
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right),\text{FIXME signs}\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right)
\end{align*}
\end_inset
\end_layout
\begin_layout Plain Layout
TODO fix signs and exponential phase factors
\end_layout
\end_inset
\begin_inset Formula
\begin{align*}
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right).
\end{align*}
\end_inset
\end_layout \end_layout
\end_body \end_body