From b927ddb791f99f940e6d58d94dc21bb15d5c934a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Wed, 29 Jun 2016 14:48:09 +0300 Subject: [PATCH] =?UTF-8?q?pi,=20tau=20zerolim=20jednoduch=C3=A9=20v=C3=BD?= =?UTF-8?q?razy=20v=20Taylorov=C4=9B=20normalisaci?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Former-commit-id: db59f269beb52d1c25f8a5a923cb42c14791bfb5 --- qpms/qpms_p.py | 5 +++++ worknotes.lyx | 28 +++++++++++++++++++++++++--- 2 files changed, 30 insertions(+), 3 deletions(-) diff --git a/qpms/qpms_p.py b/qpms/qpms_p.py index e83848a..e4e2e7b 100644 --- a/qpms/qpms_p.py +++ b/qpms/qpms_p.py @@ -214,6 +214,9 @@ def zJn(n, z, J=1): # The following 4 funs have to be refactored, possibly merged + +# FIXME: this can be expressed simply as: +# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$ def π̃_zerolim(nmax): # seems OK """ lim_{θ→ 0-} π̃(cos θ) @@ -248,6 +251,8 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky π̃_y = prenorm * π̃_y return π̃_y +# FIXME: this can be expressed simply as +# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$ def τ̃_zerolim(nmax): """ lim_{θ→ 0-} τ̃(cos θ) diff --git a/worknotes.lyx b/worknotes.lyx index f657533..c0f7203 100644 --- a/worknotes.lyx +++ b/worknotes.lyx @@ -1717,12 +1717,34 @@ Numerics: \end_layout \begin_layout Section -TODO +Misc \end_layout \begin_layout Itemize -Päivi's suggestion: suppress the dipole and let it interact only with the - higher multipoles. +The +\begin_inset Quotes eld +\end_inset + +zero limits +\begin_inset Quotes erd +\end_inset + + of +\begin_inset Formula $\tilde{\pi},\tilde{\tau}$ +\end_inset + + functions in Taylor's normalisation can be expressed as +\lang finnish + +\begin_inset Formula +\begin{eqnarray*} +\lim_{\theta\to0}\tilde{\pi}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1})\\ +\lim_{\theta\to0}\tilde{\tau}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) +\end{eqnarray*} + +\end_inset + + \end_layout \begin_layout Standard