pi, tau zerolim jednoduché výrazy v Taylorově normalisaci

Former-commit-id: db59f269beb52d1c25f8a5a923cb42c14791bfb5
This commit is contained in:
Marek Nečada 2016-06-29 14:48:09 +03:00
parent 338a671d16
commit b927ddb791
2 changed files with 30 additions and 3 deletions

View File

@ -214,6 +214,9 @@ def zJn(n, z, J=1):
# The following 4 funs have to be refactored, possibly merged
# FIXME: this can be expressed simply as:
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
def π̃_zerolim(nmax): # seems OK
"""
lim_{θ 0-} π̃(cos θ)
@ -248,6 +251,8 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
π̃_y = prenorm * π̃_y
return π̃_y
# FIXME: this can be expressed simply as
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
def τ̃_zerolim(nmax):
"""
lim_{θ 0-} τ̃(cos θ)

View File

@ -1717,12 +1717,34 @@ Numerics:
\end_layout
\begin_layout Section
TODO
Misc
\end_layout
\begin_layout Itemize
Päivi's suggestion: suppress the dipole and let it interact only with the
higher multipoles.
The
\begin_inset Quotes eld
\end_inset
zero limits
\begin_inset Quotes erd
\end_inset
of
\begin_inset Formula $\tilde{\pi},\tilde{\tau}$
\end_inset
functions in Taylor's normalisation can be expressed as
\lang finnish
\begin_inset Formula
\begin{eqnarray*}
\lim_{\theta\to0}\tilde{\pi}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1})\\
\lim_{\theta\to0}\tilde{\tau}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1})
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard