Rewrite vswf.c to use the new qpms_normalisation_t
Former-commit-id: a623d0cf1c65b6134756e76e1739f189f3d6d53f
This commit is contained in:
parent
616095890f
commit
bd40daccb7
|
@ -7,6 +7,7 @@
|
|||
#define NORMALISATION_H
|
||||
|
||||
#include "qpms_types.h"
|
||||
#include "qpms_error.h"
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
|
||||
|
@ -49,7 +50,7 @@ static inline complex double qpms_normalisation_factor_M_noCS(qpms_normalisation
|
|||
* a `gsl_sf_legendre_*_e()` call.
|
||||
*/
|
||||
static inline complex double qpms_normalisation_factor_M(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {
|
||||
complex double fac = qn;
|
||||
complex double fac = qpms_normalisation_factor_M_noCS(norm, l, m);
|
||||
return ((norm & QPMS_NORMALISATION_CSPHASE) && (m % 2)) ? -fac : fac;
|
||||
}
|
||||
|
||||
|
@ -75,12 +76,11 @@ static inline complex double qpms_normalisation_factor_N_noCS(qpms_normalisation
|
|||
* a `gsl_sf_legendre_*_e()` call.
|
||||
*/
|
||||
static inline complex double qpms_normalisation_factor_N(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {
|
||||
complex double fac = qn;
|
||||
complex double fac = qpms_normalisation_factor_N_noCS(norm, l, m);
|
||||
return ((norm & QPMS_NORMALISATION_CSPHASE) && (m % 2)) ? -fac : fac;
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
/// Returns the factors of a longitudinal VSWF of a given convention compared to the reference convention.
|
||||
/**
|
||||
* This version ignores the Condon-Shortley phase bit (perhaps because the Condon-Shortley
|
||||
|
@ -101,10 +101,9 @@ static inline complex double qpms_normalisation_factor_L_noCS(qpms_normalisation
|
|||
* a `gsl_sf_legendre_*_e()` call.
|
||||
*/
|
||||
static inline complex double qpms_normalisation_factor_L(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {
|
||||
complex double fac = qn;
|
||||
complex double fac = qpms_normalisation_factor_L_noCS(norm, l, m);
|
||||
return ((norm & QPMS_NORMALISATION_CSPHASE) && (m % 2)) ? -fac : fac;
|
||||
}
|
||||
#endif
|
||||
|
||||
/// Returns normalisation flags corresponding to the dual spherical harmonics / waves.
|
||||
/**
|
||||
|
@ -122,20 +121,20 @@ static inline qpms_normalisation_t qpms_normalisation_dual(qpms_normalisation_t
|
|||
/// Returns the asimuthal part of a spherical harmonic.
|
||||
/** Returns \f[ e^{im\phi} \f] for standard complex spherical harmonics,
|
||||
* \f[ e^{-im\phi \f] for complex spherical harmonics
|
||||
* and QPMS_NORMALISATION_REVERSE_ASIMUTHAL_PHASE set.
|
||||
* and QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE set.
|
||||
*
|
||||
* For real spherical harmonics, this gives
|
||||
* \f[
|
||||
* \sqrt{2}\cos{m \phi} \quad \mbox{if } m>0, \\
|
||||
* \sqrt{2}\sin{m \phi} \quad \mbox{if } m<0, \\
|
||||
* 1 \quad \mbox{if } m>0. \\
|
||||
* 0 \quad \mbox{if } m>0. \\
|
||||
* \f]
|
||||
*/
|
||||
static inline complex double qpms_spharm_azimuthal_part(qpms_normalisation_t norm, qpms_m_t m, double phi) {
|
||||
switch(norm & (QPMS_NORMALISATION_REVERSE_ASIMUTHAL_PHASE | QPMS_NORMALISATION_SPHARM_REAL)) {
|
||||
switch(norm & (QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE | QPMS_NORMALISATION_SPHARM_REAL)) {
|
||||
case 0:
|
||||
return cexp(I*m*phi);
|
||||
case QPMS_NORMALISATION_REVERSE_ASIMUTHAL_PHASE:
|
||||
case QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE:
|
||||
return cexp(-I*m*phi);
|
||||
case QPMS_NORMALISATION_SPHARM_REAL:
|
||||
if (m > 0) return M_SQRT2 * cos(m*phi);
|
||||
|
@ -146,4 +145,41 @@ static inline complex double qpms_spharm_azimuthal_part(qpms_normalisation_t nor
|
|||
}
|
||||
}
|
||||
|
||||
/// Returns derivative of the asimuthal part of a spherical harmonic divided by \a m.
|
||||
/**
|
||||
*
|
||||
* This is used to evaluate the VSWFs together with the \a pi member array of the
|
||||
* qpms_pitau_t structure.
|
||||
*
|
||||
* Returns \f[ i e^{im\phi} \f] for standard complex spherical harmonics,
|
||||
* \f[-i e^{-i\phi \f] for complex spherical harmonics
|
||||
* and QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE set.
|
||||
*
|
||||
* For real spherical harmonics, this gives
|
||||
* \f[
|
||||
* -\sqrt{2}\sin{m \phi} \quad \mbox{if } m>0, \\
|
||||
* \sqrt{2}\cos{m \phi} \quad \mbox{if } m<0, \\
|
||||
* -1 \quad \mbox{if } \mbox{if }m=0. \\
|
||||
* \f]
|
||||
*
|
||||
* (The value returned for \f$ m = 0 \f$ should not actually be used for
|
||||
* anything except for multiplying by zero.)
|
||||
*
|
||||
*
|
||||
*/
|
||||
static inline complex double qpms_spharm_azimuthal_part_derivative_div_m(qpms_normalisation_t norm, qpms_m_t m, double phi) {
|
||||
if(m==0) return 0;
|
||||
switch(norm & (QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE | QPMS_NORMALISATION_SPHARM_REAL)) {
|
||||
case 0:
|
||||
return I*cexp(I*m*phi);
|
||||
case QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE:
|
||||
return -I*cexp(-I*m*phi);
|
||||
case QPMS_NORMALISATION_SPHARM_REAL:
|
||||
if (m > 0) return -M_SQRT2 * sin(m*phi);
|
||||
else if (m < 0) return M_SQRT2 * cos(m*phi);
|
||||
else return -1;
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
#endif //NORMALISATION_H
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
/*! \file qpms_specfunc.h
|
||||
* \brief Various special and auxillary functions.
|
||||
*/
|
||||
#ifndef QPMS_SPECFUNC_H
|
||||
#define QPMS_SPECFUNC_H
|
||||
#include "qpms_types.h"
|
||||
|
|
|
@ -119,10 +119,8 @@ typedef enum {
|
|||
QPMS_NORMALISATION_M_MINUS = 32, ///< Include an additional \f$-1\f$ -factor into the magnetic waves.
|
||||
QPMS_NORMALISATION_N_I = 64, ///< Include an additional \a i -factor into the electric waves.
|
||||
QPMS_NORMALISATION_N_MINUS = 128, ///< Include an additional \f$-1\f$ -factor into the magnetic waves.
|
||||
#if 0
|
||||
QPMS_NORMALISATION_L_I = 256, ///< Include an additional \a i -factor into the longitudinal waves.
|
||||
QPMS_NORMALISATION_L_MINUS = 512, ///< Include an additional \f$-1\f$ -factor into the longitudinal waves.
|
||||
#endif
|
||||
QPMS_NORMALISATION_NORM_BITSTART = 65536,
|
||||
/// The VSWFs shall be power-normalised. This is the "default".
|
||||
/**
|
||||
|
|
92
qpms/vswf.c
92
qpms/vswf.c
|
@ -8,6 +8,7 @@
|
|||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "qpms_error.h"
|
||||
#include "normalisation.h"
|
||||
|
||||
|
||||
qpms_vswf_set_spec_t *qpms_vswf_set_spec_init() {
|
||||
|
@ -98,35 +99,45 @@ csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
|||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
lmcheck(l,m);
|
||||
csphvec_t N;
|
||||
complex double *bessel = malloc((l+1)*sizeof(complex double));
|
||||
if(qpms_sph_bessel_fill(btyp, l, kdlj.r, bessel)) abort();
|
||||
qpms_pitau_t pt = qpms_pitau_get(kdlj.theta, l, norm);
|
||||
complex double eimf = cexp(m * kdlj.phi * I);
|
||||
complex double *bessel;
|
||||
QPMS_CRASHING_MALLOC(bessel,(l+1)*sizeof(complex double));
|
||||
QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(btyp, l, kdlj.r, bessel));
|
||||
qpms_pitau_t pt = qpms_pitau_get(kdlj.theta, l, qpms_normalisation_t_csphase(norm));
|
||||
|
||||
complex double eimf = qpms_spharm_azimuthal_part(norm, m, kdlj.phi);
|
||||
complex double d_eimf_dmf = qpms_spharm_azimuthal_part_derivative_div_m(norm, m, kdlj.phi);
|
||||
qpms_y_t y = qpms_mn2y(m,l);
|
||||
|
||||
N.rc = l*(l+1) * pt.leg[y] * bessel[l] / kdlj.r * eimf;
|
||||
complex double besselfac = bessel[l-1] - l * bessel[l] / kdlj.r;
|
||||
N.thetac = pt.tau[y] * besselfac * eimf;
|
||||
N.phic = pt.pi[y] * besselfac * I * eimf;
|
||||
N.phic = pt.pi[y] * besselfac * d_eimf_dmf;
|
||||
|
||||
N = csphvec_scale(qpms_normalisation_factor_N_noCS(norm, l, m), N);
|
||||
|
||||
qpms_pitau_free(pt);
|
||||
free(bessel);
|
||||
return N;
|
||||
}
|
||||
|
||||
csphvec_t qpms_vswf_single_mg(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
lmcheck(l,m);
|
||||
csphvec_t M;
|
||||
complex double *bessel = malloc((l+1)*sizeof(complex double));
|
||||
if(qpms_sph_bessel_fill(btyp, l, kdlj.r, bessel)) abort();
|
||||
qpms_pitau_t pt = qpms_pitau_get(kdlj.theta, l, norm);
|
||||
complex double eimf = cexp(m * kdlj.phi * I);
|
||||
complex double *bessel;
|
||||
QPMS_CRASHING_MALLOC(bessel,(l+1)*sizeof(complex double));
|
||||
QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(btyp, l, kdlj.r, bessel));
|
||||
qpms_pitau_t pt = qpms_pitau_get(kdlj.theta, l, qpms_normalisation_t_csphase(norm));
|
||||
complex double eimf = qpms_spharm_azimuthal_part(norm, m, kdlj.phi);
|
||||
complex double d_eimf_dmf = qpms_spharm_azimuthal_part_derivative_div_m(norm, m, kdlj.phi);
|
||||
qpms_y_t y = qpms_mn2y(m,l);
|
||||
|
||||
M.rc = 0.;
|
||||
M.thetac = pt.pi[y] * bessel[l] * I * eimf;
|
||||
M.thetac = pt.pi[y] * bessel[l] * d_eimf_dmf;
|
||||
M.phic = -pt.tau[y] * bessel[l] * eimf;
|
||||
|
||||
M = csphvec_scale(qpms_normalisation_factor_M_noCS(norm, l, m), M);
|
||||
|
||||
qpms_pitau_free(pt);
|
||||
free(bessel);
|
||||
return M;
|
||||
|
@ -137,10 +148,9 @@ qpms_vswfset_sph_t *qpms_vswfset_make(qpms_l_t lMax, sph_t kdlj,
|
|||
qpms_vswfset_sph_t *res = malloc(sizeof(qpms_vswfset_sph_t));
|
||||
res->lMax = lMax;
|
||||
qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
res->el = malloc(sizeof(csphvec_t)*nelem);
|
||||
res->mg = malloc(sizeof(csphvec_t)*nelem);
|
||||
if(QPMS_SUCCESS != qpms_vswf_fill(NULL, res->mg, res->el, lMax, kdlj, btyp, norm))
|
||||
abort(); // or return NULL? or rather assert?
|
||||
QPMS_CRASHING_MALLOC(res->el, sizeof(csphvec_t)*nelem);
|
||||
QPMS_CRASHING_MALLOC(res->mg, sizeof(csphvec_t)*nelem);
|
||||
QPMS_ENSURE_SUCCESS(qpms_vswf_fill(NULL, res->mg, res->el, lMax, kdlj, btyp, norm));
|
||||
return res;
|
||||
}
|
||||
|
||||
|
@ -163,11 +173,11 @@ csphvec_t qpms_vswf_L00(csph_t kr, qpms_bessel_t btyp,
|
|||
|
||||
qpms_errno_t qpms_vswf_fill_csph(csphvec_t *const longtarget,
|
||||
csphvec_t * const mgtarget, csphvec_t * const eltarget, qpms_l_t lMax,
|
||||
csph_t kr, qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
csph_t kr, qpms_bessel_t btyp, const qpms_normalisation_t norm) {
|
||||
assert(lMax >= 1);
|
||||
complex double *bessel = malloc((lMax+1)*sizeof(complex double));
|
||||
if(qpms_sph_bessel_fill(btyp, lMax, kr.r, bessel)) abort();
|
||||
qpms_pitau_t pt = qpms_pitau_get(kr.theta, lMax, norm);
|
||||
qpms_pitau_t pt = qpms_pitau_get(kr.theta, lMax, qpms_normalisation_t_csphase(norm));
|
||||
complex double const *pbes = bessel + 1; // starting from l = 1
|
||||
double const *pleg = pt.leg;
|
||||
double const *ppi = pt.pi;
|
||||
|
@ -183,28 +193,32 @@ qpms_errno_t qpms_vswf_fill_csph(csphvec_t *const longtarget,
|
|||
}
|
||||
besderfac = *(pbes-1) - l * besfac;
|
||||
for(qpms_m_t m = -l; m <= l; ++m) {
|
||||
complex double eimf = cexp(m * kr.phi * I);
|
||||
complex double eimf = qpms_spharm_azimuthal_part(norm, m, kr.phi);
|
||||
complex double d_eimf_dmf = qpms_spharm_azimuthal_part_derivative_div_m(norm, m, kr.phi);
|
||||
if (longtarget) { QPMS_UNTESTED;
|
||||
complex double longfac = sqrt(l*(l+1)) * eimf;
|
||||
double longfac = sqrt(l*(l+1));
|
||||
plong->rc = // FATAL FIXME: I get wrong result here for plane wave re-expansion
|
||||
// whenever kr.r > 0 (for waves with longitudinal component, ofcoz)
|
||||
/*(*(pbes-1) - (l+1)/kr.r* *pbes)*/
|
||||
(besderfac-besfac)
|
||||
* (*pleg) * longfac;
|
||||
plong->thetac = *ptau * besfac * longfac;
|
||||
plong->phic = *ppi * I * besfac * longfac;
|
||||
* (*pleg) * longfac * eimf;
|
||||
plong->thetac = *ptau * besfac * longfac * eimf;
|
||||
plong->phic = *ppi * besfac * longfac * d_eimf_dmf;
|
||||
*plong = csphvec_scale(qpms_normalisation_factor_L_noCS(norm, l, m), *plong);
|
||||
++plong;
|
||||
}
|
||||
if (eltarget) {
|
||||
pel->rc = l*(l+1) * (*pleg) * besfac * eimf;
|
||||
pel->thetac = *ptau * besderfac * eimf;
|
||||
pel->phic = *ppi * besderfac * I * eimf;
|
||||
pel->phic = *ppi * besderfac * d_eimf_dmf;
|
||||
*pel = csphvec_scale(qpms_normalisation_factor_N_noCS(norm, l, m), *pel);
|
||||
++pel;
|
||||
}
|
||||
if (mgtarget) {
|
||||
pmg->rc = 0.;
|
||||
pmg->thetac = *ppi * (*pbes) * I * eimf;
|
||||
pmg->thetac = *ppi * (*pbes) * d_eimf_dmf;
|
||||
pmg->phic = - *ptau * (*pbes) * eimf;
|
||||
*pmg = csphvec_scale(qpms_normalisation_factor_M_noCS(norm, l, m), *pmg);
|
||||
++pmg;
|
||||
}
|
||||
++pleg; ++ppi; ++ptau;
|
||||
|
@ -234,7 +248,9 @@ qpms_errno_t qpms_vswf_fill_alternative(csphvec_t *const longtarget, csphvec_t *
|
|||
complex double const *pbes = bessel + 1; // starting from l = 1
|
||||
|
||||
qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
csphvec_t * const a1 = malloc(3*nelem*sizeof(csphvec_t)), * const a2 = a1 + nelem, * const a3 = a2 + nelem;
|
||||
csphvec_t *a;
|
||||
QPMS_CRASHING_MALLOC(a, 3*nelem*sizeof(csphvec_t))
|
||||
csphvec_t * const a1 = a, * const a2 = a1 + nelem, * const a3 = a2 + 2 * nelem;
|
||||
if(qpms_vecspharm_fill(a1, a2, a3, lMax, kr, norm)) abort();
|
||||
const csphvec_t *p1 = a1;
|
||||
const csphvec_t *p2 = a2;
|
||||
|
@ -246,10 +262,12 @@ qpms_errno_t qpms_vswf_fill_alternative(csphvec_t *const longtarget, csphvec_t *
|
|||
complex double besderfac = *(pbes-1) - l * besfac;
|
||||
double sqrtlfac = sqrt(l*(l+1));
|
||||
for(qpms_m_t m = -l; m <= l; ++m) {
|
||||
complex double eimf = cexp(m * kr.phi * I); // FIXME unused variable?!!!
|
||||
if (longtarget) {
|
||||
complex double L2Nfac = qpms_normalisation_factor_L_noCS(norm, l, m)
|
||||
/ qpms_normalisation_factor_N_noCS(norm, l, m);
|
||||
*plong = csphvec_add(csphvec_scale(besderfac-besfac, *p3),
|
||||
csphvec_scale(sqrtlfac * besfac, *p2));
|
||||
*plong = csphvec_scale(L2Nfac, *plong);
|
||||
++plong;
|
||||
}
|
||||
if (eltarget) {
|
||||
|
@ -265,7 +283,7 @@ qpms_errno_t qpms_vswf_fill_alternative(csphvec_t *const longtarget, csphvec_t *
|
|||
}
|
||||
++pbes;
|
||||
}
|
||||
free(a1);
|
||||
free(a);
|
||||
free(bessel);
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
@ -273,28 +291,31 @@ qpms_errno_t qpms_vswf_fill_alternative(csphvec_t *const longtarget, csphvec_t *
|
|||
qpms_errno_t qpms_vecspharm_fill(csphvec_t *const a1target, csphvec_t *const a2target, csphvec_t *const a3target,
|
||||
qpms_l_t lMax, sph_t dir, qpms_normalisation_t norm) {
|
||||
assert(lMax >= 1);
|
||||
qpms_pitau_t pt = qpms_pitau_get(dir.theta, lMax, norm);
|
||||
qpms_pitau_t pt = qpms_pitau_get(dir.theta, lMax, qpms_normalisation_t_csphase(norm));
|
||||
double const *pleg = pt.leg;
|
||||
double const *ppi = pt.pi;
|
||||
double const *ptau = pt.tau;
|
||||
csphvec_t *p1 = a1target, *p2 = a2target, *p3 = a3target;
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
for(qpms_m_t m = -l; m <= l; ++m) {
|
||||
complex double eimf = cexp(m * dir.phi * I);
|
||||
const complex double Mfac = qpms_normalisation_factor_M_noCS(norm, l, m);
|
||||
const complex double Nfac = qpms_normalisation_factor_N_noCS(norm, l, m);
|
||||
const complex double eimf = qpms_spharm_azimuthal_part(norm, m, dir.phi);
|
||||
const complex double deimf_dmf = qpms_spharm_azimuthal_part_derivative_div_m(norm, m, dir.phi);
|
||||
if (a1target) {
|
||||
p1->rc = 0;
|
||||
p1->thetac = *ppi * I * eimf;
|
||||
p1->phic = -*ptau * eimf;
|
||||
p1->thetac = *ppi * deimf_dmf * Mfac;
|
||||
p1->phic = -*ptau * eimf * Mfac;
|
||||
++p1;
|
||||
}
|
||||
if (a2target) {
|
||||
p2->rc = 0;
|
||||
p2->thetac = *ptau * eimf;
|
||||
p2->phic = *ppi * I * eimf;
|
||||
p2->thetac = *ptau * eimf * Nfac;
|
||||
p2->phic = *ppi * deimf_dmf * Nfac;
|
||||
++p2;
|
||||
}
|
||||
if (a3target) {
|
||||
p3->rc = sqrt(l*(l+1)) * (*pleg) * eimf;
|
||||
p3->rc = sqrt(l*(l+1)) * (*pleg) * eimf * Nfac;
|
||||
p3->thetac = 0;
|
||||
p3->phic = 0;
|
||||
++p3;
|
||||
|
@ -308,6 +329,10 @@ qpms_errno_t qpms_vecspharm_fill(csphvec_t *const a1target, csphvec_t *const a2t
|
|||
|
||||
qpms_errno_t qpms_vecspharm_dual_fill(csphvec_t *const a1target, csphvec_t *const a2target, csphvec_t *const a3target,
|
||||
qpms_l_t lMax, sph_t dir, qpms_normalisation_t norm) {
|
||||
#if 1
|
||||
return qpms_vecspharm_fill(a1target, a2target, a3target, lMax, dir,
|
||||
qpms_normalisation_dual(norm));
|
||||
#else
|
||||
assert(lMax >= 1);
|
||||
qpms_pitau_t pt = qpms_pitau_get(dir.theta, lMax, norm);
|
||||
double const *pleg = pt.leg;
|
||||
|
@ -341,6 +366,7 @@ qpms_errno_t qpms_vecspharm_dual_fill(csphvec_t *const a1target, csphvec_t *cons
|
|||
}
|
||||
qpms_pitau_free(pt);
|
||||
return QPMS_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
|
11
qpms/vswf.h
11
qpms/vswf.h
|
@ -11,7 +11,8 @@
|
|||
#include "qpms_types.h"
|
||||
#include <gsl/gsl_sf_legendre.h>
|
||||
|
||||
// Methods for qpms_vswf_spec_t
|
||||
// ---------------Methods for qpms_vswf_spec_t-----------------------
|
||||
//
|
||||
/// Creates a qpms_vswf_set_spec_t structure with an empty list of wave indices.
|
||||
qpms_vswf_set_spec_t *qpms_vswf_set_spec_init(void);
|
||||
/// Appends a VSWF index to a \ref qpms_vswf_set_spec_t, also updating metadata.
|
||||
|
@ -60,6 +61,8 @@ csphvec_t qpms_eval_uvswf(const qpms_vswf_set_spec_t *setspec,
|
|||
csph_t kr, ///< Evaluation point.
|
||||
qpms_bessel_t btyp);
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
/// Electric wave N.
|
||||
csphvec_t qpms_vswf_single_el(int m, int n, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm);
|
||||
|
@ -87,10 +90,14 @@ qpms_errno_t qpms_legendre_deriv_y_fill(double *where, double *where_deriv, doub
|
|||
|
||||
|
||||
/// Evaluate the zeroth-degree longitudinal VSWF \f$ \mathbf{L}_0^0 \f$.
|
||||
/**
|
||||
* Any `norm` is being ignored right now.
|
||||
*/
|
||||
csphvec_t qpms_vswf_L00(
|
||||
csph_t kdrj, //< VSWF evaluation point.
|
||||
qpms_bessel_t btyp,
|
||||
qpms_normalisation_t norm);
|
||||
qpms_normalisation_t norm //< Ignored!
|
||||
);
|
||||
|
||||
/// Evaluate VSWFs at a given point from \a l = 1 up to a given degree \a lMax.
|
||||
/**
|
||||
|
|
Loading…
Reference in New Issue