Experimental support for periodic lattices in scatsys "constructor".
Former-commit-id: 69727f4d415866b948af83c55ed8adb46b651f16
This commit is contained in:
parent
379dc3117e
commit
bf49531666
|
@ -726,6 +726,9 @@ int l2d_cellCornersWS_arr(cart2_t i1, cart2_t i2, cart2_t *oarr, double rtol);
|
|||
// Reciprocal bases; returns 0 on success, possibly a non-zero if b1 and b2 are parallel
|
||||
int l2d_reciprocalBasis1(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2);
|
||||
int l2d_reciprocalBasis2pi(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2);
|
||||
// 3D reciprocal bases; returns (direct) unit cell volume with possible sign. Assumes direct lattice basis already reduced.
|
||||
double l3d_reciprocalBasis1(const cart3_t direct_basis[3], cart3_t reciprocal_basis[3]);
|
||||
double l3d_reciprocalBasis2pi(const cart3_t direct_basis[3], cart3_t reciprocal_basis[3]);
|
||||
|
||||
double l2d_unitcell_area(cart2_t b1, cart2_t b2);
|
||||
|
||||
|
|
|
@ -849,6 +849,21 @@ int l2d_reciprocalBasis2pi(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2) {
|
|||
return retval;
|
||||
};
|
||||
|
||||
// 3D reciprocal bases; returns (direct) unit cell volume. Assumes direct lattice basis already reduced.
|
||||
double l3d_reciprocalBasis1(const cart3_t db[3], cart3_t rb[3]) {
|
||||
double vol = cart3_tripleprod(db[0], db[1], db[2]);
|
||||
for(int i = 0; i < 3; ++i)
|
||||
rb[i] = cart3_divscale(cart3_vectorprod(db[(i+1) % 3], db[(i+2) % 3]), vol);
|
||||
return vol;
|
||||
}
|
||||
|
||||
double l3d_reciprocalBasis2pi(const cart3_t db[3], cart3_t rb[3]) {
|
||||
double vol = l3d_reciprocalBasis1(db, rb);
|
||||
for(int i = 1; i < 3; ++i)
|
||||
rb[i] = cart3_scale(2 * M_PI, rb[i]);
|
||||
return vol;
|
||||
}
|
||||
|
||||
// returns the radius of inscribed circle of a hexagon (or rectangle/square if applicable) created by the shortest base triple
|
||||
double l2d_hexWebInCircleRadius(cart2_t i1, cart2_t i2) {
|
||||
cart2_t b1, b2, b3;
|
||||
|
|
|
@ -142,15 +142,68 @@ static void add_orbit_type(qpms_scatsys_t *ss, const qpms_ss_orbit_type_t *ot_cu
|
|||
ss->orbit_type_count++;
|
||||
}
|
||||
|
||||
// Standardises the lattice base vectors, and fills the other contents of ss->per[0].
|
||||
// LPTODO split the functionality in smaller functions, these might be useful elsewhere.
|
||||
static void process_lattice_bases(qpms_scatsys_t *ss, const qpms_tolerance_spec_t *tol) {
|
||||
switch(ss->lattice_dimension) {
|
||||
case 1: {
|
||||
double normsq;
|
||||
normsq = cart3_normsq(ss->per->lattice_basis[0]);
|
||||
ss->per->unitcell_volume = sqrt(normsq);
|
||||
ss->per->reciprocal_basis[0] = cart3_divscale(ss->per->lattice_basis[0], normsq);
|
||||
} break;
|
||||
case 2: {
|
||||
// (I) Create orthonormal basis of the plane in which the basis vectors lie
|
||||
cart3_t onbasis[2];
|
||||
double norm0 = cart3norm(ss->per->lattice_basis[0]);
|
||||
// 0: Just normalised 0. basis vector
|
||||
onbasis[0] = cart3_divscale(ss->per->lattice_basis[0], norm0);
|
||||
// 1: Gram-Schmidt complement of the other basis vector
|
||||
const double b0norm_dot_b1 = cart3_dot(onbasis[0], ss->per->lattice_basis[1]);
|
||||
onbasis[1] = cart3_substract(ss->per->lattice_basis[1],
|
||||
cart3_scale(b0norm_dot_b1, onbasis[0]));
|
||||
onbasis[1] = cart3_divscale(onbasis[1], cart3norm(onbasis[1]));
|
||||
// (II) Express the lattice basis in terms of the new 2d plane vector basis onbasis
|
||||
cart2_t b2d[2] = {{.x = norm0, .y = 0},
|
||||
{.x = b0norm_dot_b1, .y = cart3_dot(onbasis[1], ss->per->lattice_basis[1])}};
|
||||
// (III) Reduce lattice basis and get reciprocal bases in the 2D plane
|
||||
l2d_reduceBasis(b2d[0], b2d[1], &b2d[0], &b2d[1]);
|
||||
ss->per->unitcell_volume = l2d_unitcell_area(b2d[0], b2d[1]);
|
||||
cart2_t r2d[2];
|
||||
QPMS_ENSURE_SUCCESS(l2d_reciprocalBasis1(b2d[0], b2d[1], &r2d[0], &r2d[1]));
|
||||
// (IV) Rotate everything back to the original 3D space.
|
||||
for(int i = 0; i < 2; ++i) {
|
||||
ss->per->lattice_basis[i] = cart3_add(
|
||||
cart3_scale(b2d[i].x, onbasis[0]),
|
||||
cart3_scale(b2d[i].y, onbasis[1]));
|
||||
ss->per->reciprocal_basis[i] = cart3_add(
|
||||
cart3_scale(r2d[i].x, onbasis[0]),
|
||||
cart3_scale(r2d[i].y, onbasis[1]));
|
||||
}
|
||||
} break;
|
||||
case 3: {
|
||||
l3d_reduceBasis(ss->per->lattice_basis, ss->per->lattice_basis);
|
||||
ss->per->unitcell_volume = fabs(l3d_reciprocalBasis1(ss->per->lattice_basis,
|
||||
ss->per->reciprocal_basis));
|
||||
// TODO check unitcell_volume for sanity w.r.t tolerance
|
||||
} break;
|
||||
default:
|
||||
QPMS_WTF;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Almost 200 lines. This whole thing deserves a rewrite!
|
||||
qpms_scatsys_at_omega_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig,
|
||||
const qpms_finite_group_t *sym, complex double omega,
|
||||
const qpms_tolerance_spec_t *tol) {
|
||||
if(orig->lattice_dimension)
|
||||
QPMS_NOT_IMPLEMENTED("Periodic systems not yet done");
|
||||
// TODO check data sanity
|
||||
if (sym == NULL) {
|
||||
QPMS_WARN("No symmetry group pointer provided, assuming trivial symmetry"
|
||||
" (this is currently the only option for periodic systems).");
|
||||
sym = &QPMS_FINITE_GROUP_TRIVIAL;
|
||||
}
|
||||
|
||||
// TODO check data sanity
|
||||
|
||||
qpms_l_t lMax = 0; // the overall lMax of all base specs.
|
||||
qpms_normalisation_t normalisation = QPMS_NORMALISATION_UNDEF;
|
||||
|
@ -180,9 +233,15 @@ qpms_scatsys_at_omega_t *qpms_scatsys_apply_symmetry(const qpms_scatsys_t *orig,
|
|||
|
||||
// Allocate T-matrix, particle and particle orbit info arrays
|
||||
qpms_scatsys_t *ss;
|
||||
QPMS_CRASHING_MALLOC(ss, sizeof(qpms_scatsys_t));
|
||||
QPMS_CRASHING_MALLOC(ss, sizeof(*ss) + !!orig->lattice_dimension * sizeof(ss->per[0]));
|
||||
ss->lattice_dimension = orig->lattice_dimension;
|
||||
// TODO basic periodic lattices related stuff here.
|
||||
if (ss->lattice_dimension) {
|
||||
ss->per[0] = orig->per[0];
|
||||
process_lattice_bases(ss, tol);
|
||||
}
|
||||
for(int i = 0; i < ss->lattice_dimension; ++i) // extend lenscale by basis vectors
|
||||
lenscale = MAX(lenscale, cart3norm(ss->per->lattice_basis[i]));
|
||||
ss->lenscale = lenscale;
|
||||
ss->sym = sym;
|
||||
ss->medium = orig->medium;
|
||||
|
|
|
@ -132,18 +132,13 @@ typedef struct qpms_ss_derived_tmatrix_t {
|
|||
} qpms_ss_derived_tmatrix_t;
|
||||
|
||||
typedef struct qpms_scatsys_periodic_info_t {
|
||||
/// Coordinate system for \a lattice_basis.
|
||||
/** This is mandatory for \a lattice_dimension != 0 */
|
||||
qpms_coord_system_t lattice_basis_csystem;
|
||||
/// (Direct) lattice basis of the system (only \a lattice_dimension elements are used)
|
||||
/** This is mandatory for \a lattice_dimension != 0 */
|
||||
anycoord_point_t lattice_basis[3];
|
||||
cart3_t lattice_basis[3];
|
||||
|
||||
/// Coordinate system for \a reciprocal_basis.
|
||||
qpms_coord_system_t reciprocal_basis_csystem;
|
||||
/// Reciprocal lattice basis.
|
||||
/**(TODO specify whether it includes 2π or not) */
|
||||
anycoord_point_t reciprocal_basis[3];
|
||||
cart3_t reciprocal_basis[3];
|
||||
|
||||
/// Unitcell volume (irrelevant for non-periodic systems).
|
||||
/** The dimensionality of the volume corresponds to lattice_dimension, so
|
||||
|
@ -151,7 +146,7 @@ typedef struct qpms_scatsys_periodic_info_t {
|
|||
* lattice_dimension == 2, a 2D area.
|
||||
*/
|
||||
double unitcell_volume;
|
||||
} qpms_scatsys_pediodic_info_t;
|
||||
} qpms_scatsys_periodic_info_t;
|
||||
|
||||
|
||||
struct qpms_trans_calculator;
|
||||
|
@ -160,14 +155,8 @@ struct qpms_epsmu_generator_t;
|
|||
/// Common "class" for system of scatterers, both periodic and non-periodic.
|
||||
/**
|
||||
* Infinite periodic structures (those with \a lattice_dimension > 0)
|
||||
* have the following additional members filled:
|
||||
* - lattice_basis_csystem
|
||||
* - lattice_basis
|
||||
* - reciprocal_basis_csystem
|
||||
* - reciprocal_basis
|
||||
* - unitcell_volume
|
||||
* have the \a per element allocated and filled.
|
||||
* These are ignored for finite systems (lattice_dimension == 0).
|
||||
*
|
||||
*/
|
||||
typedef struct qpms_scatsys_t {
|
||||
/// Number of dimensions in which the system is periodic from the range 0–3.
|
||||
|
@ -225,7 +214,7 @@ typedef struct qpms_scatsys_t {
|
|||
double lenscale; // radius of the array, used as a relative tolerance measure
|
||||
struct qpms_trans_calculator *c;
|
||||
|
||||
/// Periodic lattice metadata. Only allocated/used when lattice_dimension != 0.
|
||||
/// Periodic lattice metadata. Only allocated/used when lattice_dimension != 0 (exactly one member).
|
||||
qpms_scatsys_periodic_info_t per[];
|
||||
} qpms_scatsys_t;
|
||||
|
||||
|
@ -256,6 +245,7 @@ typedef struct qpms_scatsys_at_omega_t {
|
|||
* so keep them alive until scatsys is destroyed.
|
||||
*
|
||||
* The following fields must be filled in the "proto- scattering system" \a orig:
|
||||
* * orig->lattice_dimension
|
||||
* * orig->medium – The pointers are copied to the new qpms_scatsys_t instance;
|
||||
* the target qpms_abstract_tmatrix_t objects must be kept alive before all the resulting
|
||||
* qpms_scatsys_t instances are properly destroyed.
|
||||
|
@ -270,6 +260,12 @@ typedef struct qpms_scatsys_at_omega_t {
|
|||
* * orig->p
|
||||
* * orig->p_count
|
||||
*
|
||||
* For periodic systems, the corresponding number of orig->per->lattice_basis[] elements
|
||||
* must be filled as well.
|
||||
*
|
||||
* For periodic systems, only trivial group is currently supported. Non-trivial
|
||||
* groups will cause undefined behaviour.
|
||||
*
|
||||
* The resulting qpms_scatsys_t is obtained by actually evaluating the T-matrices
|
||||
* at the given frequency \a omega and where applicable, these are compared
|
||||
* by their values with given tolerances. The T-matrix generators are expected
|
||||
|
|
|
@ -104,6 +104,22 @@ static inline double cart3_dot(const cart3_t a, const cart3_t b) {
|
|||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
|
||||
|
||||
/// 3D vector product a.k.a. cross product.
|
||||
static inline cart3_t cart3_vectorprod(const cart3_t a, const cart3_t b) {
|
||||
cart3_t c = {
|
||||
.x = a.y * b.z - a.z * b.y,
|
||||
.y = a.z * b.x - a.x * b.z,
|
||||
.z = a.x * b.y - a.y * b.x,
|
||||
};
|
||||
return c;
|
||||
}
|
||||
|
||||
/// Scalar triple product \f$ a \cdot ( b \times c ) \f$.
|
||||
static inline double cart3_tripleprod(const cart3_t a, const cart3_t b, const cart3_t c) {
|
||||
return cart3_dot(a, cart3_vectorprod(b, c));
|
||||
}
|
||||
|
||||
/// 3D vector euclidian norm squared.
|
||||
static inline double cart3_normsq(const cart3_t a) {
|
||||
return cart3_dot(a, a);
|
||||
|
@ -171,6 +187,12 @@ static inline cart3_t cart3_scale(const double c, const cart3_t v) {
|
|||
return res;
|
||||
}
|
||||
|
||||
/// 3D vector division by scalar (N.B. argument order).
|
||||
static inline cart3_t cart3_divscale( const cart3_t v, const double c) {
|
||||
cart3_t res = {v.x / c, v.y / c, v.z / c};
|
||||
return res;
|
||||
}
|
||||
|
||||
/// Euclidian distance between two 3D points.
|
||||
static inline double cart3_dist(const cart3_t a, const cart3_t b) {
|
||||
return cart3norm(cart3_substract(a,b));
|
||||
|
@ -480,6 +502,12 @@ static inline cart3_t anycoord2cart3(anycoord_point_t p, qpms_coord_system_t t)
|
|||
QPMS_WTF;
|
||||
}
|
||||
|
||||
/// Cartesian norm of anycoord_point_t.
|
||||
// The implementation is simple and stupid, do not use for heavy computations.
|
||||
static inline double anycoord_norm(anycoord_point_t p, qpms_coord_system_t t) {
|
||||
return cart3norm(anycoord2cart3(p, t));
|
||||
}
|
||||
|
||||
#if 0
|
||||
// Convenience identifiers for return values.
|
||||
static const cart3_t CART3_INVALID = {NAN, NAN, NAN};
|
||||
|
@ -846,7 +874,16 @@ static inline void anycoord_arr2something(void *dest, qpms_coord_system_t tdest,
|
|||
}
|
||||
}
|
||||
|
||||
/// Converts cart3_t to array of doubles.
|
||||
static inline void cart3_to_double_array(double a[], cart3_t b) {
|
||||
a[0] = b.x; a[1] = b.y; a[2] = b.z;
|
||||
}
|
||||
|
||||
/// Converts array of doubles to cart3_t.
|
||||
static inline cart3_t cart3_from_double_array(const double a[]) {
|
||||
cart3_t b = {.x = a[0], .y = a[1], .z = a[1]};
|
||||
return b;
|
||||
}
|
||||
|
||||
|
||||
typedef double matrix3d[3][3];
|
||||
|
|
Loading…
Reference in New Issue