Print elapsed time option
Former-commit-id: 7bd324a79bf5df4f5bc5e0b4754afcc019b870a9
This commit is contained in:
parent
b945a50740
commit
bf5d6e23a4
|
@ -9,7 +9,7 @@ from scipy.misc import factorial
|
|||
import math
|
||||
import cmath
|
||||
import quaternion, spherical_functions as sf # because of the Wigner matrices
|
||||
|
||||
import sys, time
|
||||
|
||||
# Coordinate transforms for arrays of "arbitrary" shape
|
||||
def cart2sph(cart,axis=-1):
|
||||
|
@ -964,7 +964,7 @@ def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #sa
|
|||
|
||||
import warnings
|
||||
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
|
||||
return_pq_0 = False, return_pq= False, return_xy = False):
|
||||
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
|
||||
"""
|
||||
Solves the plane wave linear scattering problem for a rectangular array of particles
|
||||
for one frequency and arbitrary number K of incoming plane waves.
|
||||
|
@ -996,6 +996,8 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
particle (inc. the field scattered from other particles.
|
||||
return_xy : bool
|
||||
Return also the cartesian x, y positions of the particles.
|
||||
watch_time : bool
|
||||
Inform about the progress on stderr
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -1010,6 +1012,9 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
x, y : (xN, yN)-shaped real array
|
||||
The x,y positions of the nanoparticles.
|
||||
"""
|
||||
if (watch_time):
|
||||
timec = time.time()
|
||||
print('%.4f: running staccet_plane_wave_rectarray' % timec, file = sys.stderr)
|
||||
nelem = TMatrices.shape[-1]
|
||||
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
|
||||
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
|
||||
|
@ -1035,6 +1040,9 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
xyind = xyind[:,0:2]
|
||||
|
||||
# Lattice speedup
|
||||
if (watch_time):
|
||||
timec = time.time()
|
||||
print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr)
|
||||
Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
|
||||
Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
|
||||
for yl in range(nelem): # source
|
||||
|
@ -1047,6 +1055,11 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
|
||||
|
||||
# Translation coefficient matrix T
|
||||
if (watch_time):
|
||||
timecold = timec
|
||||
timec = time.time()
|
||||
print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix'
|
||||
% (timec, timec-timecold), file = sys.stderr)
|
||||
transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_)
|
||||
for l in range(N):
|
||||
xil, yil = xyind[l]
|
||||
|
@ -1059,6 +1072,10 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
|
||||
Agrid = None
|
||||
Bgrid = None
|
||||
if (watch_time):
|
||||
timecold = timec
|
||||
timec = time.time()
|
||||
print('%4f: translation matrix filled (elapsed %.2f s)' % (timec, timec-timecold), file=sys.stderr)
|
||||
|
||||
# Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-)
|
||||
MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_)
|
||||
|
@ -1080,11 +1097,22 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
if (return_pq_0):
|
||||
pq_0_arr = pq_0
|
||||
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
|
||||
#if (watch_time):
|
||||
# print('%4f: building the interaction matrix' % time.time(), file=sys.stderr)
|
||||
|
||||
for j in range(N): # I wonder how this can be done without this loop...
|
||||
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
|
||||
MP_0.shape = (N*2*nelem,)
|
||||
|
||||
if (watch_time):
|
||||
timecold = time.time()
|
||||
print('%4f: solving the scattering problem for single incoming wave' % timecold,
|
||||
file = sys.stderr)
|
||||
ab = np.linalg.solve(leftmatrix, MP_0)
|
||||
if watch_time:
|
||||
timec = time.time()
|
||||
print('%4f: solved (elapsed %.2f s)' % (timec, timec-timecold), file=sys.stderr)
|
||||
|
||||
ab.shape = (xN, yN, 2, nelem)
|
||||
else:
|
||||
# handle "broadcasting" for k, E
|
||||
|
@ -1097,8 +1125,18 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
E_0s = np.broadcast_to(E_0s, (K,3))
|
||||
|
||||
# А ну, чики-брики и в дамки!
|
||||
if watch_time:
|
||||
timecold = time.time()
|
||||
print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr)
|
||||
lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True)
|
||||
leftmatrix = None
|
||||
if watch_time:
|
||||
timec = time.time()
|
||||
print('%.4f: factorization complete (elapsed %.2 s)' % (timec, timec-timecold),
|
||||
file = sys.stderr)
|
||||
print('%.4f: solving the scattering problem for %d incoming waves' % (timec, K),
|
||||
file=sys.stderr)
|
||||
timecold = timec
|
||||
|
||||
if (return_pq_0):
|
||||
pq_0_arr = np.zeros((K,N,2,nelem), dtype=np.complex_)
|
||||
|
@ -1118,6 +1156,9 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
|
||||
ab[ki] = scipy.linalg.lu_solve(lupiv, MP_0)
|
||||
ab.shape = (K, xN, yN, 2, nelem)
|
||||
if watch_time:
|
||||
timec = time.time()
|
||||
print('%.4f: done (elapsed %.2 s)' % (timec, timec-timecold),file = sys.stderr)
|
||||
if not (return_pq_0 + return_pq + return_xy):
|
||||
return ab
|
||||
returnlist = [ab]
|
||||
|
|
Loading…
Reference in New Issue