./dipdip-dirty stuff moved to ./qpms + comments, asserts and consts

Former-commit-id: 6005fcf91ca007b7e6d7093d1e82a0a305f28ffd
This commit is contained in:
Marek Nečada 2018-05-14 06:52:32 +03:00
parent 9e03e819a9
commit c0f23fce55
4 changed files with 62 additions and 46 deletions

View File

@ -1,41 +0,0 @@
#ifndef BESSELS_H
#define BESSELS_H
#include <stddef.h>
#include <complex.h>
complex double *hankelcoefftable_init(size_t maxn);
static inline complex double *
trindex_cd(complex double *arr, size_t n){
return arr + n*(n+1)/2;
}
// general, gives the offset such that result[ql] is
// the coefficient corresponding to the e**(I * x) * x**(-ql-1)
// term of the n-th Hankel function; no boundary checks!
static inline complex double *
hankelcoeffs_get(complex double *hankelcoefftable, size_t n){
return trindex_cd(hankelcoefftable, n);
}
// general; target_longrange and target_shortrange are of size (maxn+1)
// if target_longrange is NULL, only the short-range part is calculated
void hankelparts_fill(complex double *target_longrange, complex double *target_shortrange,
size_t maxn, size_t longrange_order_cutoff, // x**(-(order+1)-1) terms go completely to short-range part
complex double *hankelcoefftable,
unsigned kappa, double vc, double x); // x = k0 * r
// this declaration is general; however, the implementation
// is so far only for kappa == ???, maxn == ??? TODO
void lrhankel_recpart_fill(complex double *target_longrange_kspace /*Must be of size maxn*(maxn+1)/2*/,
size_t maxp, size_t longrange_k_cutoff /* terms e**(I x)/x**(k+1), k>= longrange_k_cutoff go
completely to the shortrange part
index with hankelcoeffs_get(target,p)l[delta_m] */,
complex double *hankelcoefftable,
unsigned kappa, double c, double k0, double k);
#endif //BESSELS_H

View File

@ -39,7 +39,7 @@ complex double * hankelcoefftable_init(size_t maxn) {
} }
void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn, void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn,
size_t lrk_cutoff, complex double *hct, size_t lrk_cutoff, complex double const * const hct,
unsigned kappa, double c, double x) { unsigned kappa, double c, double x) {
if (lrt) memset(lrt, 0, (maxn+1)*sizeof(complex double)); if (lrt) memset(lrt, 0, (maxn+1)*sizeof(complex double));
memset(srt, 0, (maxn+1)*sizeof(complex double)); memset(srt, 0, (maxn+1)*sizeof(complex double));
@ -48,7 +48,7 @@ void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn,
double xfrac = 1.; // x ** (-1-k) double xfrac = 1.; // x ** (-1-k)
for (size_t k = 0; k <= maxn; ++k) { for (size_t k = 0; k <= maxn; ++k) {
xfrac /= x; xfrac /= x;
for(size_t n = k; n <= maxn; ++n) for(size_t n = k; n <= maxn; ++n) // TODO Kahan sums here
srt[n] += ((k<lrk_cutoff) ? antiregularisator : 1) srt[n] += ((k<lrk_cutoff) ? antiregularisator : 1)
* xfrac * hankelcoeffs_get(hct,n)[k]; * xfrac * hankelcoeffs_get(hct,n)[k];
if (lrt && k < lrk_cutoff) for (size_t n = k; n <= maxn; ++n) if (lrt && k < lrk_cutoff) for (size_t n = k; n <= maxn; ++n)

54
qpms/bessels.h Normal file
View File

@ -0,0 +1,54 @@
#ifndef BESSELS_H
#define BESSELS_H
/* Short- and long-range parts of spherical Hankel functions
* and (cylindrical) Hankel transforms of the long-range parts.
* Currently, the implementation lies in bessels.c and
* lrhankel_recspace_dirty.c. The latter contains the implementation
* of the Hankel transforms, but currenty only for a pretty limited
* set of parameters. The general implementation is a BIG TODO here.
*/
#include <stddef.h>
#include <complex.h>
complex double *hankelcoefftable_init(size_t maxn);
// For navigating in the coefficients, maybe not for public use
static inline complex double *
trindex_cd(complex double const * const arr, size_t n){
return (complex double *)(arr + n*(n+1)/2);
}
// general, gives the offset such that result[ql] is
// the coefficient corresponding to the e**(I * x) * x**(-ql-1)
// term of the n-th Hankel function; no boundary checks!
static inline complex double *
hankelcoeffs_get(complex double const * const hankelcoefftable, size_t n){
return trindex_cd(hankelcoefftable, n);
}
// general; target_longrange and target_shortrange are of size (maxn+1)
// if target_longrange is NULL, only the short-range part is calculated
void hankelparts_fill(complex double *target_longrange, complex double *target_shortrange,
size_t maxn, size_t longrange_order_cutoff, /* terms e**(I x)/x**(k+1),
k>= longrange_order_cutoff go
completely to short-range part */
complex double const * const hankelcoefftable,
unsigned kappa, double vc, double x); // x = k0 * r
/* Hankel transforms of the long-range parts of the spherical Hankel functions */
// this declaration is general; however, the implementation
// is so far only for kappa == 5, maxp == 5 TODO
void lrhankel_recpart_fill(complex double *target_longrange_kspace /*Must be of size maxn*(maxn+1)/2*/,
size_t maxp /* Max. degree of transformed spherical Hankel function,
also the max. order of the Hankel transform */,
size_t longrange_order_cutoff /* terms e**(I x)/x**(k+1), k>= longrange_order_cutoff go
completely to the shortrange part
index with hankelcoeffs_get(target,p)l[delta_m] */,
complex double const * const hankelcoefftable,
unsigned kappa, double c, double k0, double k);
#endif //BESSELS_H

View File

@ -12,6 +12,9 @@
* to an error in the formula!). On the other hand, * to an error in the formula!). On the other hand,
* these numbers are tiny in their absolute value, so their contribution to the * these numbers are tiny in their absolute value, so their contribution to the
* lattice sum should be negligible. * lattice sum should be negligible.
*
* Therefore TODO use kahan summation.
*
*/ */
#define MAXQM 1 #define MAXQM 1
@ -232,12 +235,12 @@ void lrhankel_recpart_fill(complex double *target,
size_t maxp /*max. degree of transformed spherical Hankel fun, size_t maxp /*max. degree of transformed spherical Hankel fun,
also the max. order of the Hankel transform */, also the max. order of the Hankel transform */,
size_t lrk_cutoff, size_t lrk_cutoff,
complex double *hct, complex double const *const hct,
unsigned kappa, double c, double k0, double k) unsigned kappa, double c, double k0, double k)
{ {
assert(5 == kappa); // Only kappa == 5 implemented so far assert(5 == kappa); // Only kappa == 5 implemented so far
assert(maxp <= 5); // only n <= implemented so far assert(maxp <= MAXN); // only n <= 5 implemented so far
// assert(lrk_cutoff <= TODO); assert(lrk_cutoff <= MAXQM); // only q <= 2 implemented so far
const lrhankelspec (*funarr)[MAXQM+1][MAXN+1] = (k>k0) ? transfuns_f : transfuns_n; const lrhankelspec (*funarr)[MAXQM+1][MAXN+1] = (k>k0) ? transfuns_f : transfuns_n;
memset(target, 0, maxp*(maxp+1)/2*sizeof(complex double)); memset(target, 0, maxp*(maxp+1)/2*sizeof(complex double));
complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1], ash[kappa+1]; complex double a[kappa+1], b[kappa+1], d[kappa+1], e[kappa+1], ash[kappa+1];