dudom
Former-commit-id: 77250aa7b2ea2931e3cf1e3f401919cd19ba829d
This commit is contained in:
parent
82259b77f5
commit
c18e1209f4
|
@ -3,3 +3,4 @@ __version__ = get_distribution('qpms').version
|
|||
|
||||
from qpms_c import *
|
||||
from .qpms_p import *
|
||||
from .lattices import *
|
||||
|
|
|
@ -5,8 +5,8 @@ import numpy as np
|
|||
import time
|
||||
import scipy
|
||||
import sys
|
||||
from qpms_c import * # TODO be explicit about what is imported
|
||||
from .qpms_p import nelem2lMax # TODO be explicit about what is imported
|
||||
from qpms_c import get_mn_y # TODO be explicit about what is imported
|
||||
from .qpms_p import cart2sph, nelem2lMax, Ã, B̃ # TODO be explicit about what is imported
|
||||
|
||||
class Scattering(object):
|
||||
'''
|
||||
|
@ -39,36 +39,82 @@ class Scattering(object):
|
|||
k_0 (float): Wave number for the space between scatterers.
|
||||
lMax (int): Absolute maximum l for all scatterers. Depending on implementation,
|
||||
lMax can be smaller for some individual scatterers in certain subclasses.
|
||||
FIXME: here it is still implemented as constant lMax for all sites, see #!
|
||||
prepared (bool): Keeps information whether the interaction matrix has
|
||||
already been built and factorized.
|
||||
|
||||
|
||||
'''
|
||||
def __init__(self, positions, TMatrices, k_0, lMax = None, verbose=False):
|
||||
|
||||
def __init__(self, positions, TMatrices, k_0, lMax = None, verbose=False, J_scat=3):
|
||||
self.J_scat = J_scat
|
||||
self.positions = positions
|
||||
self.TMatrices = TMatrices
|
||||
self.interaction_matrix = None
|
||||
self.N = positions.shape[0]
|
||||
self.k_0 = k_0
|
||||
self.lMax = lMax ? lMax : nelem2lMax(TMatrices.shape[-1])
|
||||
self.lMax = lMax if lMax else nelem2lMax(TMatrices.shape[-1])
|
||||
nelem = lMax * (lMax + 2) #!
|
||||
self.nelem = nelem #!
|
||||
self.prepared = False
|
||||
self.TMatrices = np.broadcast_to(TMatrices, (self.N,2,nelem,2,nelem))
|
||||
|
||||
def prepare(self, keep_interaction_matrix = False, verbose=False):
|
||||
if not self.prepared:
|
||||
if not self.interaction_matrix:
|
||||
self.build_interaction_matrix(verbose=verbose)
|
||||
self.lupiv = scipy.linalg_lu_factor(interaction_matrix)
|
||||
self.lupiv = scipy.linalg.lu_factor(self.interaction_matrix,overwrite_a = not keep_interaction_matrix)
|
||||
if not keep_interaction_matrix:
|
||||
self.interaction_matrix = None
|
||||
self.prepared = True
|
||||
|
||||
def build_interaction_matrix(verbose = False):
|
||||
pass
|
||||
def build_interaction_matrix(self,verbose = False):
|
||||
N = self.N
|
||||
my, ny = get_mn_y(self.lMax)
|
||||
nelem = len(my)
|
||||
leftmatrix = np.zeros((N,2,nelem,N,2,nelem), dtype=complex)
|
||||
for i in range(N):
|
||||
for j in range(N):
|
||||
for yi in range(nelem):
|
||||
for yj in range(nelem):
|
||||
if(i != j):
|
||||
d_i2j = cart2sph(self.positions[j]-self.positions[i])
|
||||
a = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
|
||||
b = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
|
||||
leftmatrix[j,0,yj,i,0,yi] = a
|
||||
leftmatrix[j,1,yj,i,1,yi] = a
|
||||
leftmatrix[j,0,yj,i,1,yi] = b
|
||||
leftmatrix[j,1,yj,i,0,yi] = b
|
||||
# at this point, leftmatrix is the translation matrix
|
||||
n2id = np.identity(2*nelem)
|
||||
n2id.shape = (2,nelem,2,nelem)
|
||||
for j in range(N):
|
||||
leftmatrix[j] = - np.tensordot(self.TMatrices[j],leftmatrix[j],axes=([-2,-1],[0,1]))
|
||||
# at this point, jth row of leftmatrix is that of -MT
|
||||
leftmatrix[j,:,:,j,:,:] += n2id
|
||||
# now we are done, 1-MT
|
||||
leftmatrix.shape=(N*2*nelem,N*2*nelem)
|
||||
self.interaction_matrix = leftmatrix
|
||||
|
||||
def scatter(pq_0_c, verbose = False):
|
||||
def scatter_constmultipole(self, pq_0_c, verbose = False):
|
||||
N = self.N
|
||||
self.prepare(verbose=verbose)
|
||||
nelem = self.nelem
|
||||
if(pq_0_c ==1):
|
||||
pq_0_c = np.full((2,nelem),1)
|
||||
ab = np.empty((2,nelem,N*2*nelem), dtype=complex)
|
||||
for N_or_M in range(2):
|
||||
for yy in range(nelem):
|
||||
pq_0 = np.zeros((2,nelem),dtype=np.complex_)
|
||||
pq_0[N_or_M,yy] = pq_0_c[N_or_M,yy]
|
||||
pq_0 = np.broadcast_to(pq_0, (N,2,nelem))
|
||||
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
|
||||
for j in range(N):
|
||||
MP_0[j] = np.tensordot(self.TMatrices[j], pq_0[j],axes=([-2,-1],[-2,-1]))
|
||||
MP_0.shape = (N*2*nelem,)
|
||||
a[N_or_M,yy] = scipy.linalg.lu_solve(lupiv,MP_0)
|
||||
ab.shape = (2,nelem,N,2,nelem)
|
||||
return ab
|
||||
|
||||
|
||||
class Scattering_lattice(Scattering):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
116
qpms/qpms_p.py
116
qpms/qpms_p.py
|
@ -29,7 +29,7 @@ except ImportError:
|
|||
Accordingly, we define our own jit decorator that handles
|
||||
different versions of numba or does nothing if numba is not
|
||||
present. Note that functions that include unicode identifiers
|
||||
must be decorated with @ujit
|
||||
must be decorated with #@ujit
|
||||
'''
|
||||
#def dummywrap(f):
|
||||
# return f
|
||||
|
@ -46,7 +46,7 @@ def ujit(f):
|
|||
|
||||
|
||||
# Coordinate transforms for arrays of "arbitrary" shape
|
||||
@ujit
|
||||
#@ujit
|
||||
def cart2sph(cart,axis=-1):
|
||||
if (cart.shape[axis] != 3):
|
||||
raise ValueError("The converted array has to have dimension 3"
|
||||
|
@ -58,7 +58,7 @@ def cart2sph(cart,axis=-1):
|
|||
φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself
|
||||
return np.concatenate((r,θ,φ),axis=axis)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def sph2cart(sph, axis=-1):
|
||||
if (sph.shape[axis] != 3):
|
||||
raise ValueError("The converted array has to have dimension 3"
|
||||
|
@ -70,7 +70,7 @@ def sph2cart(sph, axis=-1):
|
|||
z = r * np.cos(θ)
|
||||
return np.concatenate((x,y,z),axis=axis)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def sph_loccart2cart(loccart, sph, axis=-1):
|
||||
"""
|
||||
Transformation of vector specified in local orthogonal coordinates
|
||||
|
@ -120,7 +120,7 @@ def sph_loccart2cart(loccart, sph, axis=-1):
|
|||
out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂
|
||||
return out
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
|
||||
"""
|
||||
Returns the local cartesian basis in terms of global cartesian basis.
|
||||
|
@ -156,7 +156,7 @@ def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
|
|||
out = np.concatenate((x,y,z),axis=cartaxis)
|
||||
return out
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def lpy(nmax, z):
|
||||
"""
|
||||
Associated legendre function and its derivatative at z in the 'y-indexing'.
|
||||
|
@ -233,18 +233,18 @@ def vswf_yr(pos_sph,nmax,J=1):
|
|||
pass
|
||||
|
||||
from scipy.special import sph_jn, sph_yn
|
||||
@jit
|
||||
#@jit
|
||||
def _sph_zn_1(n,z):
|
||||
return sph_jn(n,z)
|
||||
@jit
|
||||
#@jit
|
||||
def _sph_zn_2(n,z):
|
||||
return sph_yn(n,z)
|
||||
@jit
|
||||
#@jit
|
||||
def _sph_zn_3(n,z):
|
||||
besj=sph_jn(n,z)
|
||||
besy=sph_yn(n,z)
|
||||
return (besj[0] + 1j*besy[0],besj[1] + 1j*besy[1])
|
||||
@jit
|
||||
#@jit
|
||||
def _sph_zn_4(n,z):
|
||||
besj=sph_jn(n,z)
|
||||
besy=sph_yn(n,z)
|
||||
|
@ -253,7 +253,7 @@ _sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
|
|||
|
||||
# computes bessel/hankel functions for orders from 0 up to n; drops
|
||||
# the derivatives which are also included in scipy.special.sph_jn/yn
|
||||
@jit
|
||||
#@jit
|
||||
def zJn(n, z, J=1):
|
||||
return _sph_zn[J-1](n=n,z=z)
|
||||
|
||||
|
@ -263,7 +263,7 @@ def zJn(n, z, J=1):
|
|||
|
||||
# FIXME: this can be expressed simply as:
|
||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
||||
@ujit
|
||||
#@ujit
|
||||
def π̃_zerolim(nmax): # seems OK
|
||||
"""
|
||||
lim_{θ→ 0-} π̃(cos θ)
|
||||
|
@ -281,7 +281,7 @@ def π̃_zerolim(nmax): # seems OK
|
|||
π̃_y = prenorm * π̃_y
|
||||
return π̃_y
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
|
||||
"""
|
||||
lim_{θ→ π+} π̃(cos θ)
|
||||
|
@ -301,7 +301,7 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
|
|||
|
||||
# FIXME: this can be expressed simply as
|
||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
||||
@ujit
|
||||
#@ujit
|
||||
def τ̃_zerolim(nmax):
|
||||
"""
|
||||
lim_{θ→ 0-} τ̃(cos θ)
|
||||
|
@ -312,7 +312,7 @@ def τ̃_zerolim(nmax):
|
|||
p0[minus1mmask] = -p0[minus1mmask]
|
||||
return p0
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def τ̃_pilim(nmax):
|
||||
"""
|
||||
lim_{θ→ π+} τ̃(cos θ)
|
||||
|
@ -323,7 +323,7 @@ def τ̃_pilim(nmax):
|
|||
t[plus1mmask] = -t[plus1mmask]
|
||||
return t
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def get_π̃τ̃_y1(θ,nmax):
|
||||
# TODO replace with the limit functions (below) when θ approaches
|
||||
# the extreme values at about 1e-6 distance
|
||||
|
@ -343,7 +343,7 @@ def get_π̃τ̃_y1(θ,nmax):
|
|||
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
|
||||
return (π̃_y,τ̃_y)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def vswf_yr1(pos_sph,nmax,J=1):
|
||||
"""
|
||||
As vswf_yr, but evaluated only at single position (i.e. pos_sph has
|
||||
|
@ -400,7 +400,7 @@ def vswf_yr1(pos_sph,nmax,J=1):
|
|||
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
|
||||
# (ny*(ny+1)*factorial(ny+my))
|
||||
# )
|
||||
@ujit
|
||||
#@ujit
|
||||
def zplane_pq_y(nmax, betap = 0):
|
||||
"""
|
||||
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
|
||||
|
@ -419,7 +419,7 @@ def zplane_pq_y(nmax, betap = 0):
|
|||
|
||||
|
||||
#import warnings
|
||||
@ujit
|
||||
#@ujit
|
||||
def plane_pq_y(nmax, kdir_cart, E_cart):
|
||||
"""
|
||||
The plane wave expansion coefficients for any direction kdir_cart
|
||||
|
@ -476,13 +476,13 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
|
|||
# Functions copied from scattering_xu, additionaly normalized
|
||||
from py_gmm.gmm import vec_trans as vc
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def q_max(m,n,μ,ν):
|
||||
return min(n,ν,(n+ν-abs(m+μ))/2)
|
||||
|
||||
# returns array with indices corresponding to q
|
||||
# argument q does nothing for now
|
||||
@ujit
|
||||
#@ujit
|
||||
def a_q(m,n,μ,ν,q = None):
|
||||
qm=q_max(m,n,μ,ν)
|
||||
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
|
||||
|
@ -493,7 +493,7 @@ def a_q(m,n,μ,ν,q = None):
|
|||
|
||||
# All arguments are single numbers (for now)
|
||||
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
|
||||
@ujit
|
||||
#@ujit
|
||||
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
||||
"""
|
||||
The à translation coefficient for spherical vector waves.
|
||||
|
@ -552,7 +552,7 @@ def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
|||
return presum * np.sum(summandq)
|
||||
|
||||
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
|
||||
@ujit
|
||||
#@ujit
|
||||
def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
||||
"""
|
||||
The B̃ translation coefficient for spherical vector waves.
|
||||
|
@ -617,7 +617,7 @@ def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
|
|||
# In[7]:
|
||||
|
||||
# Material parameters
|
||||
@ujit
|
||||
#@ujit
|
||||
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
||||
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
|
||||
|
||||
|
@ -625,7 +625,7 @@ def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
|||
# In[8]:
|
||||
|
||||
# Mie scattering
|
||||
@ujit
|
||||
#@ujit
|
||||
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
||||
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||
"""
|
||||
|
@ -705,7 +705,7 @@ def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
|||
TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
|
||||
return (RH, RV, TH, TV)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||
"""
|
||||
Implementation according to Kristensson, page 50
|
||||
|
@ -742,7 +742,7 @@ def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_
|
|||
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
|
||||
return 1j* k_e*np.sum(G_y,axis=0)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||
"""
|
||||
r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
|
||||
|
@ -797,7 +797,7 @@ def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e,
|
|||
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
|
||||
return G_source_dest
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||||
"""
|
||||
TODO
|
||||
|
@ -817,7 +817,7 @@ def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
|
|||
# In[9]:
|
||||
|
||||
# From PRL 112, 253601 (1)
|
||||
@ujit
|
||||
#@ujit
|
||||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||
om = k * c
|
||||
z = (r-a)/a
|
||||
|
@ -839,7 +839,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
|||
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
|
||||
|
||||
# From PRL 112, 253601 (1)
|
||||
@ujit
|
||||
#@ujit
|
||||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||||
om = k * c
|
||||
z = (r-a)/a
|
||||
|
@ -848,7 +848,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
|||
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
||||
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def G0_dip_1(r_cart,k):
|
||||
"""
|
||||
Free-space dyadic Green's function in terms of the spherical vector waves.
|
||||
|
@ -865,15 +865,15 @@ def G0_dip_1(r_cart,k):
|
|||
|
||||
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
|
||||
# (The numerical value is correct only at the regular part, i.e. r != 0)
|
||||
@ujit
|
||||
#@ujit
|
||||
def _P(z):
|
||||
return (1-1/z+1/(z*z))
|
||||
@ujit
|
||||
#@ujit
|
||||
def _Q(z):
|
||||
return (-1+3/z-3/(z*z))
|
||||
|
||||
# [1, (9)] FIXME The sign here is most likely wrong!!!
|
||||
@ujit
|
||||
#@ujit
|
||||
def G0_analytical(r #cartesian!
|
||||
, k):
|
||||
I=np.identity(3)
|
||||
|
@ -887,7 +887,7 @@ def G0_analytical(r #cartesian!
|
|||
))
|
||||
|
||||
# [1, (11)]
|
||||
@ujit
|
||||
#@ujit
|
||||
def G0L_analytical(r, k):
|
||||
I=np.identity(3)
|
||||
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
||||
|
@ -896,11 +896,11 @@ def G0L_analytical(r, k):
|
|||
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
|
||||
|
||||
# [1,(10)]
|
||||
@jit
|
||||
#@jit
|
||||
def G0T_analytical(r, k):
|
||||
return G0_analytical(r,k) - G0L_analytical(r,k)
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
||||
my, ny = get_mn_y(nmax)
|
||||
nelem = len(my)
|
||||
|
@ -911,7 +911,7 @@ def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
|||
|
||||
|
||||
# Transformations of spherical bases
|
||||
@jit
|
||||
#@jit
|
||||
def WignerD_mm(l, quat):
|
||||
"""
|
||||
Calculates Wigner D matrix (as an numpy (2*l+1,2*l+1)-shaped array)
|
||||
|
@ -925,7 +925,7 @@ def WignerD_mm(l, quat):
|
|||
Delems = sf.Wigner_D_element(quat, indices).reshape(2*l+1,2*l+1)
|
||||
return Delems
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def WignerD_mm_fromvector(l, vect):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -933,7 +933,7 @@ def WignerD_mm_fromvector(l, vect):
|
|||
return WignerD_mm(l, quaternion.from_rotation_vector(vect))
|
||||
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def WignerD_yy(lmax, quat):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -948,7 +948,7 @@ def WignerD_yy(lmax, quat):
|
|||
b_in = e_in
|
||||
return Delems
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def WignerD_yy_fromvector(lmax, vect):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -956,7 +956,7 @@ def WignerD_yy_fromvector(lmax, vect):
|
|||
return WignerD_yy(lmax, quaternion.from_rotation_vector(vect))
|
||||
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def xflip_yy(lmax):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -973,12 +973,12 @@ def xflip_yy(lmax):
|
|||
b_in = e_in
|
||||
return elems
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def xflip_tyy(lmax):
|
||||
fl_yy = xflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def xflip_tyty(lmax):
|
||||
fl_yy = xflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
|
@ -987,7 +987,7 @@ def xflip_tyty(lmax):
|
|||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def yflip_yy(lmax):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -999,12 +999,12 @@ def yflip_yy(lmax):
|
|||
elems[(my % 2)==1] = elems[(my % 2)==1] * -1 # Obvious sign of tiredness (this is correct but ugly; FIXME)
|
||||
return elems
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def yflip_tyy(lmax):
|
||||
fl_yy = yflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def yflip_tyty(lmax):
|
||||
fl_yy = yflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
|
@ -1013,7 +1013,7 @@ def yflip_tyty(lmax):
|
|||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def zflip_yy(lmax):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -1029,12 +1029,12 @@ def zflip_yy(lmax):
|
|||
b_in = e_in
|
||||
return elems
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def zflip_tyy(lmax):
|
||||
fl_yy = zflip_yy(lmax)
|
||||
return np.array([fl_yy,-fl_yy])
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def zflip_tyty(lmax):
|
||||
fl_yy = zflip_yy(lmax)
|
||||
nelem = fl_yy.shape[0]
|
||||
|
@ -1043,7 +1043,7 @@ def zflip_tyty(lmax):
|
|||
fl_tyty[1,:,1,:] = -fl_yy
|
||||
return fl_tyty
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def parity_yy(lmax):
|
||||
"""
|
||||
Parity operator (flip in x,y,z)
|
||||
|
@ -1061,7 +1061,7 @@ def parity_yy(lmax):
|
|||
#----------------------------------------------------#
|
||||
|
||||
# We don't really need this particular function anymore, but...
|
||||
@jit
|
||||
#@jit
|
||||
def _scuffTMatrixConvert_EM_01(EM):
|
||||
#print(EM)
|
||||
if (EM == b'E'):
|
||||
|
@ -1071,7 +1071,7 @@ def _scuffTMatrixConvert_EM_01(EM):
|
|||
else:
|
||||
return None
|
||||
|
||||
@ujit
|
||||
#@ujit
|
||||
def loadScuffTMatrices(fileName):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -1107,7 +1107,7 @@ def loadScuffTMatrices(fileName):
|
|||
|
||||
|
||||
# misc tensor maniputalion
|
||||
@jit
|
||||
#@jit
|
||||
def apply_matrix_left(matrix, tensor, axis):
|
||||
"""
|
||||
TODO doc
|
||||
|
@ -1118,7 +1118,7 @@ def apply_matrix_left(matrix, tensor, axis):
|
|||
tmp = np.tensordot(matrix, tensor, axes=(-1,axis))
|
||||
return np.moveaxis(tmp, 0, axis)
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def apply_ndmatrix_left(matrix,tensor,axes):
|
||||
"""
|
||||
Generalized apply_matrix_left, the matrix can have more (2N) abstract dimensions,
|
||||
|
@ -1134,7 +1134,7 @@ def apply_ndmatrix_left(matrix,tensor,axes):
|
|||
# Array simulations
|
||||
####################
|
||||
|
||||
@jit
|
||||
#@jit
|
||||
def nelem2lMax(nelem):
|
||||
"""
|
||||
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
|
||||
|
@ -1190,7 +1190,7 @@ def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #sa
|
|||
pass
|
||||
|
||||
import warnings
|
||||
@ujit
|
||||
#@ujit
|
||||
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
|
||||
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
|
||||
"""
|
||||
|
@ -1422,7 +1422,7 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
|
|||
|
||||
|
||||
import warnings
|
||||
@ujit
|
||||
#@ujit
|
||||
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1,
|
||||
return_pq= False, return_xy = False, watch_time = False):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue