hex lattice mode svd to separate function
Former-commit-id: dddd45e135bce176863e70a2256b9906575b9aa8
This commit is contained in:
parent
f41caf6203
commit
c1db33fcf6
|
@ -301,116 +301,17 @@ klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
|||
kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1))))
|
||||
'''
|
||||
klist = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside)
|
||||
TMatrices_om = TMatrices_interp(freq)
|
||||
|
||||
# In[ ]:
|
||||
|
||||
n2id = np.identity(2*nelem)
|
||||
n2id.shape = (2,nelem,2,nelem)
|
||||
nan = float('nan')
|
||||
filecount = 0
|
||||
for one in (1,):
|
||||
omega = freq # from args; k_0 * c / math.sqrt(epsilon_b)
|
||||
k_0 = omega * math.sqrt(epsilon_b) / c
|
||||
tdic = qpms.hexlattice_get_AB(lMax,k_0*hexside,maxlayer)
|
||||
#print(filecount, omega/eV*hbar)
|
||||
#sys.stdout.flush()
|
||||
a_self = tdic['a_self'][:,:nelem,:nelem]
|
||||
b_self = tdic['b_self'][:,:nelem,:nelem]
|
||||
a_u2d = tdic['a_u2d'][:,:nelem,:nelem]
|
||||
b_u2d = tdic['b_u2d'][:,:nelem,:nelem]
|
||||
a_d2u = tdic['a_d2u'][:,:nelem,:nelem]
|
||||
b_d2u = tdic['b_d2u'][:,:nelem,:nelem]
|
||||
unitcell_translations = tdic['self_tr']*hexside*s3
|
||||
u2d_translations = tdic['u2d_tr']*hexside*s3
|
||||
d2u_translations = tdic['d2u_tr']*hexside*s3
|
||||
if gaussianSigma:
|
||||
unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
|
||||
|
||||
TMatrices_om = TMatrices_interp(omega)
|
||||
svdres = hexlattice_zsym_getSVD(TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer,
|
||||
omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=(0 if svdout else svn))
|
||||
if svdout:
|
||||
svUfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svVfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svSfullTElist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
|
||||
svUfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svVfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svSfullTMlist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
|
||||
((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres
|
||||
(minsvElist, minsvTMlist) = (svSfullTElist[...,-svn:], svSfullTMlist[...,-svn:])
|
||||
else:
|
||||
minsvTElist, minsvTMlist = svdres
|
||||
|
||||
|
||||
minsvTElist = np.full((klist.shape[0], svn),np.nan)
|
||||
minsvTMlist = np.full((klist.shape[0], svn),np.nan)
|
||||
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
|
||||
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
|
||||
|
||||
# sem nějaká rozumná smyčka
|
||||
for ki in range(klist.shape[0]):
|
||||
k = klist[ki]
|
||||
if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0):
|
||||
isNaNlist[ki] = True
|
||||
continue
|
||||
|
||||
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1)))
|
||||
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1)))
|
||||
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1)))
|
||||
if gaussianSigma:
|
||||
phases_self *= unitcell_envelope
|
||||
phases_u2d *= u2d_envelope
|
||||
phases_d2u *= d2u_envelope
|
||||
leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex)
|
||||
# 0: u,E<--u,E
|
||||
# 1: d,M<--d,M
|
||||
leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E
|
||||
leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E
|
||||
leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M
|
||||
leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M
|
||||
leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E
|
||||
leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M
|
||||
leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M
|
||||
leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E
|
||||
leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E
|
||||
leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M
|
||||
leftmatrix[1,0,:,0,0,:] = np.tensordot(a_u2d, phases_u2d,axes=(0,-1)) #u2d,E2E
|
||||
leftmatrix[1,1,:,0,1,:] = leftmatrix[1,0,:,0,0,:] #u2d, M2M
|
||||
leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E
|
||||
leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M
|
||||
leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E
|
||||
leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M
|
||||
#leftmatrix is now the translation matrix T
|
||||
for j in range(2):
|
||||
leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1]))
|
||||
# at this point, jth row of leftmatrix is that of -MT
|
||||
leftmatrix[j,:,:,j,:,:] += n2id
|
||||
#now we are done, 1-MT
|
||||
|
||||
leftmatrixlist[ki] = leftmatrix
|
||||
|
||||
|
||||
nnlist = np.logical_not(isNaNlist)
|
||||
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
|
||||
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
|
||||
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
|
||||
#svarr = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)
|
||||
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
|
||||
#minsvTElist[nnlist] = svarr[...,argsortlist]
|
||||
#minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1)
|
||||
if svdout:
|
||||
svUfullTElist[nnlist], svSfullTElist[nnlist], svVfullTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=True)
|
||||
svUfullTMlist[nnlist], svSfullTMlist[nnlist], svVfullTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=True)
|
||||
minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-svn:]
|
||||
#svarr = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)
|
||||
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
|
||||
#minsvTMlist[nnlist] = svarr[...,argsortlist]
|
||||
#minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1)
|
||||
minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-svn:]
|
||||
|
||||
|
||||
'''
|
||||
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr[...,0].shape)
|
||||
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr[...,0].shape)
|
||||
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
|
||||
'''
|
||||
|
||||
''' The new pretty diffracted order drawing '''
|
||||
maxlayer_reciprocal=4
|
||||
|
|
|
@ -436,3 +436,99 @@ def hexlattice_get_AB(lMax, k_hexside, maxlayer, circular=True, return_points =
|
|||
return d
|
||||
|
||||
|
||||
def hexlattice_zsym_getSVD(TMatrices_om, epsilon_b, hexside, maxlayer, omega, klist, gaussianSigma=False, onlyNmin=0):
|
||||
n2id = np.identity(2*nelem)
|
||||
n2id.shape = (2,nelem,2,nelem)
|
||||
nan = float('nan')
|
||||
k_0 = omega * math.sqrt(epsilon_b) / c
|
||||
tdic = qpms.hexlattice_get_AB(lMax,k_0*hexside,maxlayer)
|
||||
a_self = tdic['a_self'][:,:nelem,:nelem]
|
||||
b_self = tdic['b_self'][:,:nelem,:nelem]
|
||||
a_u2d = tdic['a_u2d'][:,:nelem,:nelem]
|
||||
b_u2d = tdic['b_u2d'][:,:nelem,:nelem]
|
||||
a_d2u = tdic['a_d2u'][:,:nelem,:nelem]
|
||||
b_d2u = tdic['b_d2u'][:,:nelem,:nelem]
|
||||
unitcell_translations = tdic['self_tr']*hexside*s3
|
||||
u2d_translations = tdic['u2d_tr']*hexside*s3
|
||||
d2u_translations = tdic['d2u_tr']*hexside*s3
|
||||
|
||||
if gaussianSigma:
|
||||
unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2))
|
||||
|
||||
#TMatrices_om = TMatrices_interp(omega)
|
||||
if(not onlyNmin):
|
||||
svUfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svVfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svSfullTElist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
|
||||
svUfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svVfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
|
||||
svSfullTMlist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
|
||||
else:
|
||||
minsvTElist = np.full((klist.shape[0], onlyNmin),np.nan)
|
||||
minsvTMlist = np.full((klist.shape[0], onlyNmin),np.nan)
|
||||
|
||||
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
|
||||
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
|
||||
|
||||
# sem nějaká rozumná smyčka
|
||||
for ki in range(klist.shape[0]):
|
||||
k = klist[ki]
|
||||
if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0):
|
||||
isNaNlist[ki] = True
|
||||
continue
|
||||
|
||||
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1)))
|
||||
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1)))
|
||||
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1)))
|
||||
if gaussianSigma:
|
||||
phases_self *= unitcell_envelope
|
||||
phases_u2d *= u2d_envelope
|
||||
phases_d2u *= d2u_envelope
|
||||
leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex)
|
||||
# 0:[u,E<--u,E ]
|
||||
# 1:[d,M<--d,M ]
|
||||
leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E
|
||||
leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E
|
||||
leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M
|
||||
leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M
|
||||
leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E
|
||||
leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M
|
||||
leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M
|
||||
leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E
|
||||
leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E
|
||||
leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M
|
||||
leftmatrix[1,0,:,0,0,:] = np.tensordot(a_u2d, phases_u2d,axes=(0,-1)) #u2d,E2E
|
||||
leftmatrix[1,1,:,0,1,:] = leftmatrix[1,0,:,0,0,:] #u2d, M2M
|
||||
leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E
|
||||
leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M
|
||||
leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E
|
||||
leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M
|
||||
#leftmatrix is now the translation matrix T
|
||||
for j in range(2):
|
||||
leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1]))
|
||||
# at this point, jth row of leftmatrix is that of -MT
|
||||
leftmatrix[j,:,:,j,:,:] += n2id
|
||||
#now we are done, 1-MT
|
||||
|
||||
leftmatrixlist[ki] = leftmatrix
|
||||
|
||||
|
||||
nnlist = np.logical_not(isNaNlist)
|
||||
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
|
||||
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
|
||||
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
|
||||
|
||||
if(not onlyNmin):
|
||||
svUfullTElist[nnlist], svSfullTElist[nnlist], svVfullTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=True)
|
||||
svUfullTMlist[nnlist], svSfullTMlist[nnlist], svVfullTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=True)
|
||||
return ((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist))
|
||||
else:
|
||||
minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-onlyNmin:]
|
||||
minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-onlyNmin:]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue