diff --git a/notes/conventions.md b/notes/conventions.md index 632e1a3..60b1dc6 100644 --- a/notes/conventions.md +++ b/notes/conventions.md @@ -1,6 +1,44 @@ VSWF conventions ================ +In general, the (transversal) VSWFs can be defined using (some) vector spherical harmonics +as follows: \f[ + \wfm\pr{k\vect r}_{lm} = \sphbes_l(kr) \vshrot_{lm} (\uvec r),\\ + \wfe\pr{k\vect r}_{lm} = \frac{\frac{\ud}{\ud(kr)}\pr{kr\sphbes_l(kr)}}{kr} \vshgrad_{lm}(\uvec r) + + \sqrt{l(l+1)} \frac{\sphbes_l(kr)}{kr} \vshrad_{lm}(\uvec r), +\f] +where at this point, we don't have much expectations regarding the +normalisations and phases of the +"rotational", "gradiental" and "radial" vector spherical harmonics +\f$ \vshrot, \vshgrad, \vshrad \f$, and the waves can be of whatever "direction" +(regular, outgoing, etc.) depending on the kind of the spherical Bessel function +\f$ \sphbes \f$. +We only require that the spherical harmonic degree \f$ l \f$ +is what it is supposed to be. The meaning of the order $m$ may vary depending +on convention. Moreover, in order to \f$ \wfe \f$ be a valid "electric" multipole wave, +there is a fixed relation between radial and gradiental vector spherical harmonics +(more on that later). + +Let us define the "dual" vector spherical harmonics \f$ \vshD_{\tau lm} \f$ as follows: +\f[ + \int_\Omega \vsh_{\tau lm} (\uvec r) \cdot \vshD_{\tau' l'm} (\uvec r) \, \ud \Omega + = \delta_{\tau', \tau}\delta_{l',l} \delta_{m',m} +\f] +where the \f$ \cdot \f$ symbol here means the bilinear form of the vector components +without complex conjugation (which is included in the "duality" mapping). + +For the sake of non-ambiguity, let us define the "canonical" associated Legendre polynomials +as in \cite DLMF TODO exact refs: +\f[ + \rawLeg{l}{0}(x) = \frac{1}{2^n n!} \frac{\ud^n}{\ud x^n} \pr{x^2-1}^n , \\ + \rawLeg{l}{m}(x) = \pr{1-x^2}^{m/2} \frac{\ud^m}{\ud x^m} \rawLeg{l}{0},\quad\abs{x}\le 1, m \ge 0, \\ + \rawLeg{l}{m}(x) = (-1)^\abs{m} \frac{(l-\abs{m})!}{(l+\abs{m})!} \rawLeg{l}{\abs{m}}, + \quad \abs{x} \le 1, m < 0. +\f] + + +Literature convention table +--------------------------- | Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes | |--- |--- |--- |--- |--- |--- |--- |--- | diff --git a/notes/mathjax_newcommands.js b/notes/mathjax_newcommands.js index 6d7cc28..89ac46f 100644 --- a/notes/mathjax_newcommands.js +++ b/notes/mathjax_newcommands.js @@ -1,11 +1,28 @@ MathJax.Hub.Config({ TeX: { Macros: { + + // Abs: ['\\left\\lvert #2 \\right\\rvert_{\\text{#1}}', 2, ""] // optional arg. example + // from https://stackoverflow.com/questions/24628668/how-to-define-custom-macros-in-mathjax vect: ["{\\mathbf{#1}}",1], abs: ["{\\left|{#1}\\right|}",1], ud: "{\\mathrm{d}}", pr: ["{\\left({#1}\\right)}", 1], // parentheses to save typing uvec: ["{\\mathbf{\\hat{#1}}}", 1], + + vsh: "{\\mathbf{A}}", // vector spherical harmonic, general + vshD: "\\mathbf{A}^\\dagger", // dual vector spherical harmonic, general + vshrad: "{\\mathbf{A}_3}", // vector spherical harmonic radial, general + vshrot: "{\\mathbf{A}_1}", // vector spherical harmonic "rotational", general + vshgrad: "{\\mathbf{A}_2}", // vector spherical harmonic "gradiental", general + vshradD: "{\\mathbf{A}_3}^\\dagger}", // dual vector spherical harmonic radial, general + vshrotD: "{\\mathbf{A}_1^\\dagger}", // dual vector spherical harmonic "rotational", general + vshgradD: "{\\mathbf{A}_2^\\dagger}", // dual vector spherical harmonic "gradiental", general + wfe: "{\\mathbf{N}}", // Electric wave general + wfm: "{\\mathbf{M}}", // Magnetic wave general + sphbes: "{z}", // General spherical Bessel fun + rawLeg: ["{P_{#1}^{#2}}", 2], // "Canonical" associated Legendre polynomial + // Kristensson's VSWFs, complex version (2014 notes) wfkcreg: "{\\vect{v}}", // regular wave wfkcout: "{\\vect{u}}", // outgoing wave