From c638c47192844877113c5336cc0e57c0370df555 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Wed, 2 Aug 2017 16:46:51 +0000 Subject: [PATCH] Start writing notes on dirac combs Former-commit-id: f91e766e82dc8b84246a895bf95fc9d59afa996d --- ewald.lyx | 467 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 467 insertions(+) create mode 100644 ewald.lyx diff --git a/ewald.lyx b/ewald.lyx new file mode 100644 index 0000000..d9c1a60 --- /dev/null +++ b/ewald.lyx @@ -0,0 +1,467 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\begin_preamble +\usepackage{unicode-math} + +% Toto je trik, jimž se z fontspec získá familyname pro následující +\ExplSyntaxOn +\DeclareExpandableDocumentCommand{\getfamilyname}{m} + { + \use:c { g__fontspec_ \cs_to_str:N #1 _family } + } +\ExplSyntaxOff + +% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše +\newfontfamily\MyCyr{CMU Serif} + +\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it} +\newcommand{\makecyrmathletter}[1]{% + \begingroup\lccode`a=#1\lowercase{\endgroup + \Umathcode`a}="0 \csname symcyritletters\endcsname\space #1 +} +\count255="409 +\loop\ifnum\count255<"44F + \advance\count255 by 1 + \makecyrmathletter{\count255} +\repeat + +\renewcommand{\lyxmathsym}[1]{#1} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman TeX Gyre Pagella +\font_sans default +\font_typewriter default +\font_math default +\font_default_family default +\use_non_tex_fonts true +\font_sc false +\font_osf true +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format pdf4 +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref true +\pdf_title "Accelerating lattice mode calculations with T-matrix method" +\pdf_author "Marek Nečada" +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\uoft}[1]{\mathfrak{F}#1} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ud}{\mathrm{d}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\basis}[1]{\mathfrak{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\dc}[1]{Ш_{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\rec}[1]{#1^{-1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\recb}[1]{#1^{\widehat{-1}}} +\end_inset + + +\end_layout + +\begin_layout Title +Accelerating lattice mode calculations with +\begin_inset Formula $T$ +\end_inset + +-matrix method +\end_layout + +\begin_layout Author +Marek Nečada +\end_layout + +\begin_layout Section +Formulation of the problem +\end_layout + +\begin_layout Standard +Assume a system of compact EM scatterers in otherwise homogeneous and isotropic + medium, and assume that the system, i.e. + both the medium and the scatterers, have linear response. + A scattering problem in such system can be written as +\begin_inset Formula +\[ +A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α}) +\] + +\end_inset + +where +\begin_inset Formula $T_{α}$ +\end_inset + + is the +\begin_inset Formula $T$ +\end_inset + +-matrix for scatterer α, +\begin_inset Formula $A_{α}$ +\end_inset + + is its vector of the scattered wave expansion coefficient (the multipole + indices are not explicitely indicated here) and +\begin_inset Formula $P_{α}$ +\end_inset + + is the local expansion of the incoming sources. + +\begin_inset Formula $S_{α\leftarrowβ}$ +\end_inset + + is ... + and ... + is ... +\end_layout + +\begin_layout Standard +... +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Now suppose that the scatterers constitute an infinite lattice +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}. +\] + +\end_inset + +Due to the periodicity, we can write +\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$ +\end_inset + +. + In order to find lattice modes, we search for solutions with zero RHS +\begin_inset Formula +\[ +\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0 +\] + +\end_inset + +and we assume periodic solution +\begin_inset Formula $A_{\vect b\alpha}(\vect k)=A_{\vect a\alpha}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Multidimensional Dirac comb +\end_layout + +\begin_layout Subsection +1D +\end_layout + +\begin_layout Standard +This is all from Wikipedia +\end_layout + +\begin_layout Subsubsection +Definitions +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +Ш(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\ +Ш_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}Ш\left(\frac{t}{T}\right) +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subsubsection +Fourier series representation +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +Ш_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsubsection +Fourier transform +\end_layout + +\begin_layout Standard +With unitary ordinary frequency Ft., i.e. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x +\] + +\end_inset + +we have +\begin_inset Formula +\[ +\uoft{Ш_{T}}(f)=\frac{1}{T}Ш_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT} +\] + +\end_inset + + and with unitary angular frequency Ft., i.e. +\begin_inset Formula +\[ +\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect k}\ud^{n}\vect x +\] + +\end_inset + +we have +\begin_inset Formula +\[ +\uaft{Ш_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}Ш_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Dirac comb for multidimensional lattices +\end_layout + +\begin_layout Subsubsection +Definitions +\end_layout + +\begin_layout Standard +Let +\begin_inset Formula $d$ +\end_inset + + be the dimensionality of the real vector space in question, and let +\begin_inset Formula $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$ +\end_inset + + denote a basis for some lattice in that space. + Let the corresponding lattice delta comb be +\begin_inset Formula +\[ +\dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Furthemore, let +\begin_inset Formula $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$ +\end_inset + + be the reciprocal lattice basis, that is the basis satisfying +\begin_inset Formula $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$ +\end_inset + +. + This slightly differs from the usual definition of a reciprocal basis, + here denoted +\begin_inset Formula $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$ +\end_inset + +, which satisfies +\begin_inset Formula $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$ +\end_inset + + instead. +\end_layout + +\begin_layout Subsubsection +Factorisation of a multidimensional lattice delta comb +\end_layout + +\begin_layout Standard +By simple drawing, it can be seen that +\begin_inset Formula +\[ +\dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right) +\] + +\end_inset + +where +\begin_inset Formula $c_{\basis u}$ +\end_inset + + is some numerical volume factor. + In order to determine +\begin_inset Formula $c_{\basis u}$ +\end_inset + +, let us consider only the +\begin_inset Quotes eld +\end_inset + +zero tooth +\begin_inset Quotes erd +\end_inset + + of the comb, leading to +\begin_inset Formula +\[ +\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right). +\] + +\end_inset + +From the scaling property of delta function, +\begin_inset Formula $\delta(ax)=\left|a\right|^{-1}\delta(x)$ +\end_inset + +, we get +\begin_inset Formula +\[ +\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right). +\] + +\end_inset + +Applying both sides to a test function that is one at the origin, we get + +\begin_inset Formula $c_{\basis u}=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert $ +\end_inset + +, and hence +\begin_inset Formula +\[ +\dc{\basis u}(\vect x)=\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert \dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Subsubsection +Fourier series representation +\end_layout + +\begin_layout Subsubsection +Fourier transform +\end_layout + +\end_body +\end_document