diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index 14efb8c..fe907b6 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -746,9 +746,93 @@ A rule of thumb to choose the \begin_inset Formula $\delta$ \end_inset - can be obtained from the spherical Bessel function expansion around zero, - TODO. + can be obtained from the spherical Bessel function expansion around zero +\begin_inset CommandInset citation +LatexCommand cite +after "10.52.1" +key "NIST:DLMF" +literal "false" + +\end_inset + + by requiring that +\begin_inset Formula $\delta\gtrsim\left(nR\right)^{L}/\left(2L+1\right)!!$ +\end_inset + +, where +\begin_inset Formula $R$ +\end_inset + + is the scatterer radius and +\begin_inset Formula $n$ +\end_inset + + its (maximum) refractive index. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Formula +\begin{align*} +\left(2n+1\right)!! & =\frac{\left(2n+1\right)!}{2^{n}n!},\\ +\delta\gtrsim & \frac{R^{L}}{\left(2L+1\right)!!}=\frac{\left(2R\right)^{L}L!}{\left(2L+1\right)!} +\end{align*} + +\end_inset + +Stirling +\begin_inset Formula $n!\approx\sqrt{2\pi n}\left(n/e\right)^{n}$ +\end_inset + + so +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula +\begin{align*} +\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{2\pi L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2\pi\left(2L+1\right)}\left(\frac{2L+1}{e}\right)^{2L+1}}\\ +\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2L+1}\left(\frac{2L+1}{e}\right)^{2L+1}}\\ +\log\delta & \gtrsim L\log2+L\log R+\frac{1}{2}\log L-\frac{1}{2}\log\left(2L+1\right)+L\log L-L\log e-\left(2L+1\right)\log\left(2L+1\right)+\left(2L+1\right)\log e\\ +\log\delta & \gtrsim L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L+1\right)+\left(L+1\right)\\ + & >L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L\right)+\left(L+1\right)\\ + & =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)\\ + & =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right) +\end{align*} + +\end_inset + +too complicated, watabout +\begin_inset Formula +\[ +\delta\gtrsim\left(2R\right)^{L}\frac{L^{L+1/2}e^{L}}{\left(2L\right)^{2L}}=\frac{R^{L}e^{L}}{2^{L}}L^{L+1/2} +\] + +\end_inset + + +\begin_inset Formula +\[ +\log\delta\gtrsim L\log\frac{ReL}{2} +\] + +\end_inset + + +\begin_inset Formula +\[ +\log\delta\gtrsim L\log\frac{ReL}{2} +\] + +\end_inset + +yäk +\end_layout + +\end_inset + + \end_layout \begin_layout Subsubsection diff --git a/lepaper/symmetries.tex b/lepaper/symmetries.tex deleted file mode 100644 index a3be3e9..0000000 --- a/lepaper/symmetries.tex +++ /dev/null @@ -1,149 +0,0 @@ -\selectlanguage{finnish}% - -\section{Symmetries}\label{sec:Symmetries} - -If the system has nontrivial point group symmetries, group theory -gives additional understanding of the system properties, and can be -used to reduce the computational costs. - -As an example, if our system has a $D_{2h}$ symmetry and our truncated -$\left(I-T\trops\right)$ matrix has size $N\times N$, it can be -block-diagonalized into eight blocks of size about $N/8\times N/8$, -each of which can be LU-factorised separately (this is due to the -fact that $D_{2h}$ has eight different one-dimensional irreducible -representations). This can reduce both memory and time requirements -to solve the scattering problem (\ref{eq:Multiple-scattering problem block form}) -by a factor of 64. - -In periodic systems (problems (\ref{eq:Multiple-scattering problem unit cell block form}), -(\ref{eq:lattice mode equation})) due to small number of particles -per unit cell, the costliest part is usually the evaluation of the -lattice sums in the $W\left(\omega,\vect k\right)$ matrix, not the -linear algebra. However, the lattice modes can be searched for in -each irrep separately, and the irrep dimension gives a priori information -about mode degeneracy. - -\subsection{Excitation coefficients under point group operations} - -In order to use the point group symmetries, we first need to know -how they affect our basis functions, i.e. the VSWFs. - -Let $g$ be a member of orthogonal group $O(3)$, i.e. a 3D point -rotation or reflection operation that transforms vectors in $\reals^{3}$ -with an orthogonal matrix $R_{g}$: -\[ -\vect r\mapsto R_{g}\vect r. -\] -Spherical harmonics $\ush lm$, being a basis the $l$-dimensional -representation of $O(3)$, transform as \cite[???]{dresselhaus_group_2008} -\[ -\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right) -\] -where $D_{m,m'}^{l}\left(g\right)$ denotes the elements of the \emph{Wigner -matrix} representing the operation $g$. By their definition, vector -spherical harmonics $\vsh 2lm,\vsh 3lm$ transform in the same way, -\begin{align*} -\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\ -\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right), -\end{align*} -but the remaining set $\vsh 1lm$ transforms differently due to their -pseudovector nature stemming from the cross product in their definition: -\[ -\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right), -\] -where $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$ -if $g$ is a proper rotation, but for spatial inversion operation -$i:\vect r\mapsto-\vect r$ we have $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$. -The transformation behaviour of vector spherical harmonics directly -propagates to the spherical vector waves, cf. (\ref{eq:VSWF regular}), -(\ref{eq:VSWF outgoing}): -\begin{align*} -\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\ -\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right), -\end{align*} -(and analogously for the regular waves $\vswfrtlm{\tau}lm$). For -convenience, we introduce the symbol $D_{m,m'}^{\tau l}$ that describes -the transformation of both types (``magnetic'' and ``electric'') -of waves at once: -\[ -\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right). -\] -Using these, we can express the VSWF expansion (\ref{eq:E field expansion}) -of the electric field around origin in a rotated/reflected system, -\[ -\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right), -\] -which, together with the $T$-matrix definition, (\ref{eq:T-matrix definition}) -can be used to obtain a $T$-matrix of a rotated or mirror-reflected -particle. Let $T$ be the $T$-matrix of an original particle; the -$T$-matrix of a particle physically transformed by operation $g\in O(3)$ -is then -\begin{equation} -T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle} -\end{equation} -If the particle is symmetric (so that $g$ produces a particle indistinguishable -from the original one), the $T$-matrix must remain invariant under -the transformation (\ref{eq:T-matrix of a transformed particle}), -$T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$. Explicit forms -of these invariance properties for the most imporant point group symmetries -can be found in \cite{schulz_point-group_1999}. - -If the field expansion is done around a point $\vect r_{p}$ different -from the global origin, as in \ref{eq:E field expansion multiparticle}, -we have\foreignlanguage{english}{ -\begin{align} -\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin} -\end{align} -} - -\begin{figure} -\caption{Scatterer orbits under $D_{2}$ symmetry. Particles $A,B,C,D$ lie -outside of origin or any mirror planes, and together constitute an -orbit of the size equal to the order of the group, $\left|D_{2}\right|=4$. -Particles $E,F$ lie on the $xz$ plane, hence the corresponding reflection -maps each of them to itself, but the $yz$ reflection (or the $\pi$ -rotation around the $z$ axis) maps them to each other, forming a -particle orbit of size 2. The particle $O$ in the very origin is -always mapped to itself, constituting its own orbit.}\label{fig:D2-symmetric structure particle orbits} -\end{figure} - -With these transformation properties in hand, we can proceed to the -effects of point symmetries on the whole many-particle system. Let -us have a many-particle system symmetric with respect to a point group -$G$. A symmetry operation $g\in G$ determines a permutation of the -particles: $p\mapsto\pi_{g}(p)$, $p\in\mathcal{P}$. For a given -particle $p$, we will call the set of particles onto which any of -the symmetries maps the particle $p$, i.e. the set $\left\{ \pi_{g}\left(p\right);g\in G\right\} $, -as the \emph{orbit} of particle $p$. The whole set $\mathcal{P}$ -can therefore be divided into the different particle orbits; an example -is in Fig. \ref{fig:D2-symmetric structure particle orbits}. The -importance of the particle orbits stems from the following: in the -multiple-scattering problem, outside of the scatterers one has \foreignlanguage{english}{ -\begin{align} -\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\ - & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right). -\end{align} -This means that the field expansion coefficients $\rcoeffp p,\outcoeffp p$ -transform as -\begin{align} -\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\ -\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation} -\end{align} -Obviously, the expansion coefficients belonging to particles in different -orbits do not mix together. As before, we introduce a short-hand block-matrix -notation for \ref{eq:excitation coefficient under symmetry operation}} - -\selectlanguage{english}% -\begin{align} -\rcoeff & \mapsto D\left(g\right)a,\nonumber \\ -\outcoeff & \mapsto D\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form} -\end{align} - -\selectlanguage{finnish}% - -\subsection{Irrep decomposition} - -\subsection{Periodic systems} - -\selectlanguage{english}% -