General 3D Ewald short-range part now compiles.

Unchecked, untested.


Former-commit-id: 40c10a0eef6575cd29e95be5a0908e28c24ded1d
This commit is contained in:
Marek Nečada 2018-11-21 19:41:20 +00:00
parent 11f380170a
commit c7c9dc52b0
1 changed files with 12 additions and 13 deletions

View File

@ -113,7 +113,7 @@ qpms_ewald32_constants_t *qpms_ewald32_constants_init(const qpms_l_t lMax /*, co
c->s1_constfacs[y] = NULL; c->s1_constfacs[y] = NULL;
} }
c->legendre0_csphase = csphase; c->legendre_csphase = csphase;
c->legendre0 = malloc(gsl_sf_legendre_array_n(lMax) * sizeof(double)); c->legendre0 = malloc(gsl_sf_legendre_array_n(lMax) * sizeof(double));
// N.B. here I use the GSL_SF_LEGENRE_NONE, in order to be consistent with translations.c // N.B. here I use the GSL_SF_LEGENRE_NONE, in order to be consistent with translations.c
c->legendre_normconv = GSL_SF_LEGENDRE_NONE; c->legendre_normconv = GSL_SF_LEGENDRE_NONE;
@ -506,11 +506,11 @@ int ewald32_sigma_short_points_and_shift(
} }
int ewald3_sigma_short( int ewald3_sigma_short(
complex double *target_sigmasr_y, // must be c->nelem_sc long complex double *target, // must be c->nelem_sc long
double *target_sigmasr_y_err, // must be c->nelem_sc long or NULL double *err, // must be c->nelem_sc long or NULL
const qpms_ewald32_constants_t *c, const qpms_ewald32_constants_t *c,
const double eta, const double k, const double eta, const double k,
const LatticeDimesionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same const LatticeDimensionality latdim, // apart from asserts and possible optimisations ignored, as the SR formula stays the same
PGenSph *pgen_R, const bool pgen_generates_shifted_points PGenSph *pgen_R, const bool pgen_generates_shifted_points
/* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift, /* If false, the behaviour corresponds to the old ewald32_sigma_short_points_and_shift,
* so the function assumes that the generated points correspond to the unshifted Bravais lattice, * so the function assumes that the generated points correspond to the unshifted Bravais lattice,
@ -547,14 +547,13 @@ int ewald3_sigma_short(
double intres[lMax+1], interr[lMax+1]; double intres[lMax+1], interr[lMax+1];
// CHOOSE POINT BEGIN // CHOOSE POINT BEGIN
while ((pgen_retdata = PGenSph_next(pgen_R)) & PGEN_NOTDONE) { // BEGIN POINT LOOP while ((pgen_retdata = PGenSph_next(pgen_R)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP
// CHOOSE POINT END // CHOOSE POINT END
cart3_t Rpq_shifted_cart; // I will need both sph and cart representations anyway... cart3_t Rpq_shifted_cart; // I will need both sph and cart representations anyway...
sph_t Rpq_shifted_sph; sph_t Rpq_shifted_sph;
if (pgen_generates_shifted_points) { if (pgen_generates_shifted_points) {
TODO; Rpq_shifted_sph = pgen_retdata.point_sph;
Rpq_shifted_sph = ...; Rpq_shifted_cart = sph2cart(Rpq_shifted_sph);
Rpq_shifted_cart = ...;
} else { // as in the old _points_and_shift functions } else { // as in the old _points_and_shift functions
//const point2d Rpq_shifted = Rpoints_plus_particle_shift[i]; //const point2d Rpq_shifted = Rpoints_plus_particle_shift[i];
const sph_t bravais_point_sph = pgen_retdata.point_sph; const sph_t bravais_point_sph = pgen_retdata.point_sph;
@ -569,7 +568,7 @@ int ewald3_sigma_short(
const double r_pq_shifted = Rpq_shifted_sph.r; const double r_pq_shifted = Rpq_shifted_sph.r;
// if the radius is the same as in previous cycle, most of the calculations can be recycled // if the radius is the same as in previous cycle, most of the calculations can be recycled
const bool new_r_pq_shifted = (!pgen_generates_shifted_points) || (retdata.flags & PGEN_NEWR); const bool new_r_pq_shifted = (!pgen_generates_shifted_points) || (pgen_retdata.flags & PGEN_NEWR);
if (!new_r_pq_shifted) assert(r_pq_shifted_prev == r_pq_shifted); if (!new_r_pq_shifted) assert(r_pq_shifted_prev == r_pq_shifted);
const complex double e_beta_Rpq = cexp(I*cart3_dot(beta, Rpq_shifted_cart)); // POINT-DEPENDENT const complex double e_beta_Rpq = cexp(I*cart3_dot(beta, Rpq_shifted_cart)); // POINT-DEPENDENT
@ -592,7 +591,7 @@ int ewald3_sigma_short(
legendre_array = c->legendre0; legendre_array = c->legendre0;
break; break;
default: default:
if(GSL_SUCCESS != gsl_sf_legendre_array_e(legendre_buf, lMax, cos(Rpq_shifted_theta), csphase, c->legendre_minus1)) if(GSL_SUCCESS != gsl_sf_legendre_array_e(c->legendre_normconv, lMax, cos(Rpq_shifted_theta), c->legendre_csphase, legendre_buf))
abort(); abort();
legendre_array = legendre_buf; legendre_array = legendre_buf;
break; break;
@ -613,7 +612,7 @@ int ewald3_sigma_short(
if((m+n) % 2 != 0) // odd coefficients are zero. if((m+n) % 2 != 0) // odd coefficients are zero.
continue; // nothing needed, already done by memset continue; // nothing needed, already done by memset
e_imf = cexp(I*m*Rpq_shifted_arg); // profiling TODO: calculate outside the n-loop? e_imf = cexp(I*m*Rpq_shifted_arg); // profiling TODO: calculate outside the n-loop?
} else if (speedup_regime == LAT_1D_IN_3D_XYONLY) { // 1D lattice along the z axis } else if (speedup_regime == LAT_1D_IN_3D_ZONLY) { // 1D lattice along the z axis
if (m != 0) // m-non-zero coefficients are zero if (m != 0) // m-non-zero coefficients are zero
continue; // nothing needed, already done by memset continue; // nothing needed, already done by memset
e_imf = 1; e_imf = 1;
@ -626,9 +625,9 @@ int ewald3_sigma_short(
const qpms_y_t y = qpms_mn2y_sc(m,n); const qpms_y_t y = qpms_mn2y_sc(m,n);
if(err) if(err)
kahanadd(err + y, err_c + y, cabs(leg * (prefacn / I) * R_pq_pown kahanadd(err + y, err_c + y, cabs(leg * (prefacn / I) * R_pq_pown
* interr)); // TODO include also other errors * interr[n])); // TODO include also other errors
ckahanadd(target + y, target_c + y, ckahanadd(target + y, target_c + y,
prefacn * R_pq_pown * leg * intres * e_beta_Rpq * e_imf * min1pow_m_neg(m)); prefacn * R_pq_pown * leg * intres[n] * e_beta_Rpq * e_imf * min1pow_m_neg(m));
} }
} }