From c9631d217fec45af9e90861622e970719e0ea34d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 6 Dec 2016 18:20:23 +0200 Subject: [PATCH] Fixed decorators (not elegant but working) Former-commit-id: 8f54570f4413fdbc7544a2b4fe3ea183290026e7 --- qpms/qpms_p.py | 86 ++++++++++++++++++++++++++------------------------ setup.py | 2 +- 2 files changed, 46 insertions(+), 42 deletions(-) diff --git a/qpms/qpms_p.py b/qpms/qpms_p.py index 548c0aa..4f4ab2a 100644 --- a/qpms/qpms_p.py +++ b/qpms/qpms_p.py @@ -29,20 +29,24 @@ except ImportError: Accordingly, we define our own jit decorator that handles different versions of numba or does nothing if numba is not present. Note that functions that include unicode identifiers -must be decorated with @jit(u=True) +must be decorated with @ujit ''' -def jit(u=False): - def resdec(f): - if u and use_jit_utf8: - return numba.jit(f) - if (not u) and use_jit: - return numba.jit(f) +#def dummywrap(f): +# return f +def jit(f): + if use_jit: + return numba.jit(f) + else: + return f +def ujit(f): + if use_jit_utf8: + return numba.jit(f) + else: return f - return resdec # Coordinate transforms for arrays of "arbitrary" shape -@jit(u=True) +@ujit def cart2sph(cart,axis=-1): if (cart.shape[axis] != 3): raise ValueError("The converted array has to have dimension 3" @@ -54,7 +58,7 @@ def cart2sph(cart,axis=-1): φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself return np.concatenate((r,θ,φ),axis=axis) -@jit(u=True) +@ujit def sph2cart(sph, axis=-1): if (sph.shape[axis] != 3): raise ValueError("The converted array has to have dimension 3" @@ -66,7 +70,7 @@ def sph2cart(sph, axis=-1): z = r * np.cos(θ) return np.concatenate((x,y,z),axis=axis) -@jit(u=True) +@ujit def sph_loccart2cart(loccart, sph, axis=-1): """ Transformation of vector specified in local orthogonal coordinates @@ -116,7 +120,7 @@ def sph_loccart2cart(loccart, sph, axis=-1): out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂ return out -@jit(u=True) +@ujit def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None): """ Returns the local cartesian basis in terms of global cartesian basis. @@ -152,7 +156,7 @@ def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None): out = np.concatenate((x,y,z),axis=cartaxis) return out -@jit(u=False) +@jit def lpy(nmax, z): """ Associated legendre function and its derivatative at z in the 'y-indexing'. @@ -259,7 +263,7 @@ def zJn(n, z, J=1): # FIXME: this can be expressed simply as: # $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$ -@jit(u=True) +@ujit def π̃_zerolim(nmax): # seems OK """ lim_{θ→ 0-} π̃(cos θ) @@ -277,7 +281,7 @@ def π̃_zerolim(nmax): # seems OK π̃_y = prenorm * π̃_y return π̃_y -@jit(u=True) +@ujit def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky """ lim_{θ→ π+} π̃(cos θ) @@ -297,7 +301,7 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky # FIXME: this can be expressed simply as # $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$ -@jit(u=True) +@ujit def τ̃_zerolim(nmax): """ lim_{θ→ 0-} τ̃(cos θ) @@ -308,7 +312,7 @@ def τ̃_zerolim(nmax): p0[minus1mmask] = -p0[minus1mmask] return p0 -@jit(u=True) +@ujit def τ̃_pilim(nmax): """ lim_{θ→ π+} τ̃(cos θ) @@ -319,7 +323,7 @@ def τ̃_pilim(nmax): t[plus1mmask] = -t[plus1mmask] return t -@jit(u=True) +@ujit def get_π̃τ̃_y1(θ,nmax): # TODO replace with the limit functions (below) when θ approaches # the extreme values at about 1e-6 distance @@ -339,7 +343,7 @@ def get_π̃τ̃_y1(θ,nmax): τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ??? return (π̃_y,τ̃_y) -@jit(u=True) +@ujit def vswf_yr1(pos_sph,nmax,J=1): """ As vswf_yr, but evaluated only at single position (i.e. pos_sph has @@ -396,7 +400,7 @@ def vswf_yr1(pos_sph,nmax,J=1): # return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) / # (ny*(ny+1)*factorial(ny+my)) # ) -@jit(u=True) +@ujit def zplane_pq_y(nmax, betap = 0): """ The z-propagating plane wave expansion coefficients as in [1, (1.12)] @@ -415,7 +419,7 @@ def zplane_pq_y(nmax, betap = 0): #import warnings -@jit(u=True) +@ujit def plane_pq_y(nmax, kdir_cart, E_cart): """ The plane wave expansion coefficients for any direction kdir_cart @@ -472,13 +476,13 @@ def plane_pq_y(nmax, kdir_cart, E_cart): # Functions copied from scattering_xu, additionaly normalized from py_gmm.gmm import vec_trans as vc -@jit(u=True) +@ujit def q_max(m,n,μ,ν): return min(n,ν,(n+ν-abs(m+μ))/2) # returns array with indices corresponding to q # argument q does nothing for now -@jit(u=True) +@ujit def a_q(m,n,μ,ν,q = None): qm=q_max(m,n,μ,ν) res, err= vc.gaunt_xu(m,n,μ,ν,qm) @@ -489,7 +493,7 @@ def a_q(m,n,μ,ν,q = None): # All arguments are single numbers (for now) # ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA -@jit(u=True) +@ujit def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J): """ The à translation coefficient for spherical vector waves. @@ -548,7 +552,7 @@ def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J): return presum * np.sum(summandq) # ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285) -@jit(u=True) +@ujit def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J): """ The B̃ translation coefficient for spherical vector waves. @@ -613,7 +617,7 @@ def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J): # In[7]: # Material parameters -@jit(u=True) +@ujit def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p)) @@ -621,7 +625,7 @@ def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course # In[8]: # Mie scattering -@jit(u=True) +@ujit def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3 k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ @@ -701,7 +705,7 @@ def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3 TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs)) return (RH, RV, TH, TV) -@jit(u=True) +@ujit def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ Implementation according to Kristensson, page 50 @@ -738,7 +742,7 @@ def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_ RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň] return 1j* k_e*np.sum(G_y,axis=0) -@jit(u=True) +@ujit def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates @@ -793,7 +797,7 @@ def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1) return G_source_dest -@jit(u=True) +@ujit def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ TODO @@ -813,7 +817,7 @@ def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,): # In[9]: # From PRL 112, 253601 (1) -@jit(u=True) +@ujit def Grr_Delga(nmax, a, r, k, ε_m, ε_b): om = k * c z = (r-a)/a @@ -835,7 +839,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b): # Test if the decomposition of plane wave works also for absorbing environment (complex k). # From PRL 112, 253601 (1) -@jit(u=True) +@ujit def Grr_Delga(nmax, a, r, k, ε_m, ε_b): om = k * c z = (r-a)/a @@ -844,7 +848,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b): s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b))) return (g0 + s * c**2/(4*π*om**2*ε_b*a**3)) -@jit(u=True) +@ujit def G0_dip_1(r_cart,k): """ Free-space dyadic Green's function in terms of the spherical vector waves. @@ -861,15 +865,15 @@ def G0_dip_1(r_cart,k): # Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1] # (The numerical value is correct only at the regular part, i.e. r != 0) -@jit(u=True) +@ujit def _P(z): return (1-1/z+1/(z*z)) -@jit(u=True) +@ujit def _Q(z): return (-1+3/z-3/(z*z)) # [1, (9)] FIXME The sign here is most likely wrong!!! -@jit(u=True) +@ujit def G0_analytical(r #cartesian! , k): I=np.identity(3) @@ -883,7 +887,7 @@ def G0_analytical(r #cartesian! )) # [1, (11)] -@jit(u=True) +@ujit def G0L_analytical(r, k): I=np.identity(3) rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1) @@ -896,7 +900,7 @@ def G0L_analytical(r, k): def G0T_analytical(r, k): return G0_analytical(r,k) - G0L_analytical(r,k) -@jit(u=True) +@ujit def G0_sum_1_slow(source_cart, dest_cart, k, nmax): my, ny = get_mn_y(nmax) nelem = len(my) @@ -1067,7 +1071,7 @@ def _scuffTMatrixConvert_EM_01(EM): else: return None -@jit(u=True) +@ujit def loadScuffTMatrices(fileName): """ TODO doc @@ -1186,7 +1190,7 @@ def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #sa pass import warnings -@jit(u=True) +@ujit def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s, return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False): """ @@ -1418,7 +1422,7 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_ import warnings -@jit(u=True) +@ujit def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1, return_pq= False, return_xy = False, watch_time = False): """ diff --git a/setup.py b/setup.py index 9b356fa..af9bfc6 100644 --- a/setup.py +++ b/setup.py @@ -12,7 +12,7 @@ qpms_c = Extension('qpms_c', sources = ['qpms/qpms_c.pyx']) setup(name='qpms', - version = "0.1.3", + version = "0.1.5", packages=['qpms'], # setup_requires=['setuptools_cython'], install_requires=['cython>=0.21','quaternion','spherical_functions','py_gmm'],