Ewald 1D in 3D: jdu spát

Former-commit-id: 7ed762d676c8f7fb1c4988522d3fca51eb66cc9b
This commit is contained in:
Marek Nečada 2020-06-16 00:35:03 +03:00
parent 827499c3ff
commit cae5cee97d
1 changed files with 77 additions and 4 deletions

View File

@ -340,6 +340,49 @@ so
\end_inset \end_inset
\end_layout
\begin_layout Standard
We also have
\begin_inset Formula
\begin{align*}
e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\
& =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{n},
\end{align*}
\end_inset
hence
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
BTW:
\begin_inset Formula
\begin{align*}
\left|\vect r_{\bot}\right|^{2} & =\left|\vect r\right|^{2}-\left|\vect r_{\parallel}\right|^{2}=\left|\vect r\right|^{2}-\left(\vect r\cdot\uvec K\right)^{2},\\
\vect r_{\bot}\cdot\vect s_{\bot} & =\vect r\cdot\vect s_{\bot}
\end{align*}
\end_inset
\end_layout
\end_inset
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -364,13 +407,13 @@ Now we set the conventions: let the lattice lie on the
\end_inset \end_inset
, ,
\begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi$ \begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi=\uvec xr\sin\theta\cos\phi+\uvec yr\sin\theta\sin\phi$
\end_inset \end_inset
, we have , we have
\begin_inset Formula \begin_inset Formula
\[ \[
\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right). \left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r^{2}\left(\sin\theta\right)^{2}+2s_{\bot}r\sin\theta\cos\left(\phi-\Phi\right).
\] \]
\end_inset \end_inset
@ -411,7 +454,7 @@ The angular integral (assuming it can be separated from the rest like this)
is is
\begin_inset Formula \begin_inset Formula
\[ \[
I_{l}^{m}\equiv\int\ud\Omega_{\vect r}\,\ushD lm\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} I_{l'}^{m'}\equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}
\] \]
\end_inset \end_inset
@ -427,12 +470,37 @@ Let's further extract the azimuthal part
\begin_inset Formula \begin_inset Formula
\[ \[
e^{-im\Phi}A_{l}^{m}\equiv\int_{0}^{2\pi}e^{-im\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im\Phi}\int_{0}^{2\pi}e^{-im\varphi}e^{-w\cos\varphi}\ud\varphi e^{-im'\Phi}A_{l'}^{m'}\equiv\int_{0}^{2\pi}e^{-im'\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im'\Phi}\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi
\] \]
\end_inset \end_inset
Using [DLMF 10.9.2],
\begin_inset Formula $\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi=\int_{0}^{2\pi}\cos\left(m'\varphi\right)e^{i(iw)\cos\varphi}=2\pi i^{m'}J_{m'}\left(iw\right)$
\end_inset
we have
\begin_inset Formula
\[
e^{-m'\Phi}A_{l'}^{m'}=2\pi i^{m'}J_{m'}\left(iw\right),
\]
\end_inset
assuming that
\begin_inset Formula $w$
\end_inset
is real (which does not necessarily have to be true!); numerical experiments
in Sage show that the result is valid also for complex
\begin_inset Formula $w$
\end_inset
.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\ A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\
@ -450,6 +518,11 @@ A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\
\end_inset \end_inset
\end_layout
\end_inset
\begin_inset Note Note \begin_inset Note Note
status collapsed status collapsed