Ewald 1D in 3D: jdu spát
Former-commit-id: 7ed762d676c8f7fb1c4988522d3fca51eb66cc9b
This commit is contained in:
parent
827499c3ff
commit
cae5cee97d
|
@ -340,6 +340,49 @@ so
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
We also have
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\
|
||||||
|
& =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{n},
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
hence
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
BTW:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\left|\vect r_{\bot}\right|^{2} & =\left|\vect r\right|^{2}-\left|\vect r_{\parallel}\right|^{2}=\left|\vect r\right|^{2}-\left(\vect r\cdot\uvec K\right)^{2},\\
|
||||||
|
\vect r_{\bot}\cdot\vect s_{\bot} & =\vect r\cdot\vect s_{\bot}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -364,13 +407,13 @@ Now we set the conventions: let the lattice lie on the
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
,
|
,
|
||||||
\begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi$
|
\begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi=\uvec xr\sin\theta\cos\phi+\uvec yr\sin\theta\sin\phi$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, we have
|
, we have
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right).
|
\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r^{2}\left(\sin\theta\right)^{2}+2s_{\bot}r\sin\theta\cos\left(\phi-\Phi\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -411,7 +454,7 @@ The angular integral (assuming it can be separated from the rest like this)
|
||||||
is
|
is
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
I_{l}^{m}\equiv\int\ud\Omega_{\vect r}\,\ushD lm\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}
|
I_{l'}^{m'}\equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -427,12 +470,37 @@ Let's further extract the azimuthal part
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
e^{-im\Phi}A_{l}^{m}\equiv\int_{0}^{2\pi}e^{-im\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im\Phi}\int_{0}^{2\pi}e^{-im\varphi}e^{-w\cos\varphi}\ud\varphi
|
e^{-im'\Phi}A_{l'}^{m'}\equiv\int_{0}^{2\pi}e^{-im'\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im'\Phi}\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
Using [DLMF 10.9.2],
|
||||||
|
\begin_inset Formula $\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi=\int_{0}^{2\pi}\cos\left(m'\varphi\right)e^{i(iw)\cos\varphi}=2\pi i^{m'}J_{m'}\left(iw\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we have
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
e^{-m'\Phi}A_{l'}^{m'}=2\pi i^{m'}J_{m'}\left(iw\right),
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
assuming that
|
||||||
|
\begin_inset Formula $w$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is real (which does not necessarily have to be true!); numerical experiments
|
||||||
|
in Sage show that the result is valid also for complex
|
||||||
|
\begin_inset Formula $w$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\begin_inset Note Note
|
||||||
|
status collapsed
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\
|
A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\
|
||||||
|
@ -450,6 +518,11 @@ A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status collapsed
|
status collapsed
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue