Symmetries in periodic systems.

Former-commit-id: bd2806656af8532d17cb4d177990c3f7ffff2c71
This commit is contained in:
Marek Nečada 2020-06-07 18:26:52 +03:00
parent d8d0efc1b3
commit cb89e208ce
3 changed files with 155 additions and 70 deletions

Binary file not shown.

View File

@ -0,0 +1 @@
89b8943cf0f4c08a1ad487d561eebd971c2a721f

View File

@ -1252,6 +1252,148 @@ better formulation
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figs/hex/p6m_group_actions.pdf
width 95text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Representing symmetry action on electromagnetic Bloch waves in a lattice
with
\begin_inset Formula $p6m$
\end_inset
wallpaper group symmetry.
In a hexagonal array with five particles (labeled
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $E$
\end_inset
) per unit cell, we first choose into which unit cells do the particles
on unit cell boundaries belong.
a) At
\begin_inset Formula $M$
\end_inset
point, the little co-group contains a
\begin_inset Formula $D_{2}$
\end_inset
point group; the unit cells can be divided into two groups (alternating
horizontal rows) with opposite sign.
The horizontal mirror operation
\begin_inset Formula $\sigma_{xz}$
\end_inset
maps the particles from a single unit cell to each other.
However, the vertical mirror operation
\begin_inset Formula $\sigma_{yz}$
\end_inset
maps them onto particles belonging to different unit cells, introducing
possible phase factors in the point group action:
\begin_inset Formula $B,C,D$
\end_inset
map onto
\begin_inset Formula $B,C,D$
\end_inset
belonging to different unit cell from same phase group, so no additional
phase is needed; however,
\begin_inset Formula $A,E$
\end_inset
map onto
\begin_inset Formula $E,A$
\end_inset
belonging to unitcells with relative phases
\begin_inset Formula $\pm\pi$
\end_inset
, therefore the corresponding action matrix blocks will carry a factor
\begin_inset Formula $-1$
\end_inset
.
b) At
\begin_inset Formula $K$
\end_inset
point point, little co-group contains a
\begin_inset Formula $D_{3}$
\end_inset
point group, and the unit cells divide into three groups with relative
phase shift
\begin_inset Formula $e^{2\pi i/3}$
\end_inset
.
The horizontal mirroring
\begin_inset Formula $\sigma_{xz}$
\end_inset
again does not introduce any additional phase.
However, the
\begin_inset Formula $C_{3}$
\end_inset
rotation mixes particles belonging to different unit cells, so for example
particle
\begin_inset Formula $D$
\end_inset
maps onto particle
\begin_inset Formula $D$
\end_inset
, but with additional phase factor
\begin_inset Formula $e^{-2\pi i/3}$
\end_inset
.
\begin_inset CommandInset label
LatexCommand label
name "Phase factor illustration"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
@ -1462,7 +1604,18 @@ the original
\begin_inset Formula $C_{3}$
\end_inset
rotation, as an example we have
rotation as an example we have (see Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "Phase factor illustration"
plural "false"
caps "false"
noprefix "false"
\end_inset
b)
\begin_inset Formula
\begin{align*}
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\
@ -1513,75 +1666,6 @@ literal "false"
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename p6m_mpoint.png
lyxscale 20
width 100col%
\end_inset
\end_layout
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename p6m_kpoint.png
lyxscale 20
width 100col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Representing symmetry action on electromagnetic Bloch waves in a lattice
with
\begin_inset Formula $p6m$
\end_inset
wallpaper group symmetry for
\begin_inset Formula $M$
\end_inset
(top) and
\begin_inset Formula $K$
\end_inset
(bottom) points.
\begin_inset CommandInset label
LatexCommand label
name "Phase factor illustration"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open