Symmetries in periodic systems.
Former-commit-id: bd2806656af8532d17cb4d177990c3f7ffff2c71
This commit is contained in:
parent
d8d0efc1b3
commit
cb89e208ce
Binary file not shown.
|
@ -0,0 +1 @@
|
|||
89b8943cf0f4c08a1ad487d561eebd971c2a721f
|
|
@ -1252,6 +1252,148 @@ better formulation
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename figs/hex/p6m_group_actions.pdf
|
||||
width 95text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Representing symmetry action on electromagnetic Bloch waves in a lattice
|
||||
with
|
||||
\begin_inset Formula $p6m$
|
||||
\end_inset
|
||||
|
||||
wallpaper group symmetry.
|
||||
In a hexagonal array with five particles (labeled
|
||||
\begin_inset Formula $A$
|
||||
\end_inset
|
||||
|
||||
–
|
||||
\begin_inset Formula $E$
|
||||
\end_inset
|
||||
|
||||
) per unit cell, we first choose into which unit cells do the particles
|
||||
on unit cell boundaries belong.
|
||||
a) At
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
point, the little co-group contains a
|
||||
\begin_inset Formula $D_{2}$
|
||||
\end_inset
|
||||
|
||||
point group; the unit cells can be divided into two groups (alternating
|
||||
horizontal rows) with opposite sign.
|
||||
The horizontal mirror operation
|
||||
\begin_inset Formula $\sigma_{xz}$
|
||||
\end_inset
|
||||
|
||||
maps the particles from a single unit cell to each other.
|
||||
However, the vertical mirror operation
|
||||
\begin_inset Formula $\sigma_{yz}$
|
||||
\end_inset
|
||||
|
||||
maps them onto particles belonging to different unit cells, introducing
|
||||
possible phase factors in the point group action:
|
||||
\begin_inset Formula $B,C,D$
|
||||
\end_inset
|
||||
|
||||
map onto
|
||||
\begin_inset Formula $B,C,D$
|
||||
\end_inset
|
||||
|
||||
belonging to different unit cell from same phase group, so no additional
|
||||
phase is needed; however,
|
||||
\begin_inset Formula $A,E$
|
||||
\end_inset
|
||||
|
||||
map onto
|
||||
\begin_inset Formula $E,A$
|
||||
\end_inset
|
||||
|
||||
belonging to unitcells with relative phases
|
||||
\begin_inset Formula $\pm\pi$
|
||||
\end_inset
|
||||
|
||||
, therefore the corresponding action matrix blocks will carry a factor
|
||||
\begin_inset Formula $-1$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
b) At
|
||||
\begin_inset Formula $K$
|
||||
\end_inset
|
||||
|
||||
point point, little co-group contains a
|
||||
\begin_inset Formula $D_{3}$
|
||||
\end_inset
|
||||
|
||||
point group, and the unit cells divide into three groups with relative
|
||||
phase shift
|
||||
\begin_inset Formula $e^{2\pi i/3}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The horizontal mirroring
|
||||
\begin_inset Formula $\sigma_{xz}$
|
||||
\end_inset
|
||||
|
||||
again does not introduce any additional phase.
|
||||
However, the
|
||||
\begin_inset Formula $C_{3}$
|
||||
\end_inset
|
||||
|
||||
rotation mixes particles belonging to different unit cells, so for example
|
||||
particle
|
||||
\begin_inset Formula $D$
|
||||
\end_inset
|
||||
|
||||
maps onto particle
|
||||
\begin_inset Formula $D$
|
||||
\end_inset
|
||||
|
||||
, but with additional phase factor
|
||||
\begin_inset Formula $e^{-2\pi i/3}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "Phase factor illustration"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -1462,7 +1604,18 @@ the original
|
|||
\begin_inset Formula $C_{3}$
|
||||
\end_inset
|
||||
|
||||
rotation, as an example we have
|
||||
rotation as an example we have (see Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "Phase factor illustration"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
b)
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\
|
||||
|
@ -1513,75 +1666,6 @@ literal "false"
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename p6m_mpoint.png
|
||||
lyxscale 20
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename p6m_kpoint.png
|
||||
lyxscale 20
|
||||
width 100col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Representing symmetry action on electromagnetic Bloch waves in a lattice
|
||||
with
|
||||
\begin_inset Formula $p6m$
|
||||
\end_inset
|
||||
|
||||
wallpaper group symmetry for
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
(top) and
|
||||
\begin_inset Formula $K$
|
||||
\end_inset
|
||||
|
||||
(bottom) points.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "Phase factor illustration"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
|
Loading…
Reference in New Issue