Some "declarations of intent" for new C code.
Former-commit-id: 552279d756fc30f9138f8fc3a9fbc5f901466547
This commit is contained in:
parent
536301fddc
commit
cee14a69e3
|
@ -0,0 +1,13 @@
|
||||||
|
#ifndef SYMMETRIES_H
|
||||||
|
#define SYMMETRIES_H
|
||||||
|
/* TODO.
|
||||||
|
*
|
||||||
|
* Here will be functions providing point group operations
|
||||||
|
* operating on translation operators and T-matrices
|
||||||
|
* as in tmatrices.py.
|
||||||
|
*
|
||||||
|
* Maybe (much later) also point and space group irrep
|
||||||
|
* functionality as in symmetries.py.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#endif // SYMMETRIES_H
|
|
@ -395,6 +395,8 @@ point_group_info = { # representation info of some useful point groups
|
||||||
# permutation group generators
|
# permutation group generators
|
||||||
(Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
|
(Permutation(0,1, size=6)(2,3), # x -> - x mirror operation (i.e. yz mirror plane)
|
||||||
Permutation(0,3, size=6)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
|
Permutation(0,3, size=6)(1,2), # y -> - y mirror operation (i.e. xz mirror plane)
|
||||||
|
# ^^^ btw, I guess that Permutation(0,1, size=6) and Permutation(2,3, size=6) would
|
||||||
|
# do exactly the same job (they should; CHECK)
|
||||||
Permutation(4,5, size=6) # z -> - z mirror operation (i.e. xy mirror plane)
|
Permutation(4,5, size=6) # z -> - z mirror operation (i.e. xy mirror plane)
|
||||||
),
|
),
|
||||||
# dictionary with irrep generators
|
# dictionary with irrep generators
|
||||||
|
|
|
@ -0,0 +1,12 @@
|
||||||
|
#ifndef TMATRICES_H
|
||||||
|
#define TMATRICES_H
|
||||||
|
/* TODO
|
||||||
|
* This file will contain declarations of functions providing
|
||||||
|
* a) Mie T-matrix for spherical particle
|
||||||
|
* i) using Drude model
|
||||||
|
* ii) using interpolated material data
|
||||||
|
* b) T-matrix from scuff-tmatrix output, using interpolation
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#endif //TMATRICES_H
|
Loading…
Reference in New Issue