Working on 1D ewald sums

Former-commit-id: 957a1638d81f80032ee86bfd374004743f230767
This commit is contained in:
Marek Nečada 2018-11-14 06:37:59 +00:00
parent 42ae511de6
commit cffe339c5d
4 changed files with 547 additions and 55 deletions

View File

@ -141,6 +141,12 @@ theorems-starred
\end_inset
\begin_inset FormulaMacro
\newcommand{\sgn}{\operatorname{sgn}}
{\mathrm{sgn}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
@ -646,11 +652,15 @@ W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\bas
where both sums should converge nicely.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Section
Finding a good decomposition
Finding a good decomposition deprecated
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
The remaining challenge is therefore finding a suitable decomposition
\begin_inset Formula $S^{\textup{L}}+S^{\textup{S}}$
\end_inset
@ -690,7 +700,7 @@ reference "eq:W Long definition"
absolutely convergent.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
The translation operator
\begin_inset Formula $S$
\end_inset
@ -724,9 +734,26 @@ where
\end_layout
\begin_layout Standard
The spherical Hankel functions can be expressed analytically as (REF DLMF
10.49.6, 10.49.1)
\begin_layout Plain Layout
The spherical Hankel functions can be expressed analytically as
\begin_inset CommandInset citation
LatexCommand cite
after "10.49.6, 10.49.1"
key "NIST:DLMF"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
(REF DLMF 10.49.6, 10.49.1)
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},\label{eq:spherical Hankel function series}
@ -753,7 +780,7 @@ h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\righ
2d
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
Assume that all scatterers are placed in the plane
\begin_inset Formula $\vect z=0$
\end_inset
@ -769,7 +796,7 @@ reference "eq:Fourier v. Hankel tf 2d"
, reads
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Formula
\begin{multline*}
\uaft{S_{l',m',t'\leftarrow l,m,t}^{\textup{L}}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
@ -803,7 +830,7 @@ Here
sum, but might be higher in order to speed the convergence up.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
Obviously, all the terms
\begin_inset Formula $\propto s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
\end_inset
@ -826,7 +853,7 @@ reference "eq:spherical Hankel function series"
, as they decay fast enough.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
The remaining task is therefore to find a suitable decomposition of
\begin_inset Formula $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
\end_inset
@ -896,7 +923,7 @@ The remaining task is therefore to find a suitable decomposition of
.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
The electrostatic Ewald summation uses regularisation with
\begin_inset Formula $1-e^{-cr^{2}}$
\end_inset
@ -923,7 +950,7 @@ reference "eq:2d long range regularisation problem statement"
might lead to satisfactory results; see below.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Note Note
status open
@ -983,7 +1010,7 @@ s_{q}^{\textup{L}}\left(x\right)\equiv s_{q}(x)\tilde{\rho}_{\kappa,č}(x)=e^{ix
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Note Note
status open
@ -1019,7 +1046,7 @@ name "sub:Hankel-transforms-binom-reg"
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
Let
\begin_inset Note Note
status open
@ -1043,7 +1070,7 @@ reference "eq:binom regularisation function"
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Formula
\begin{eqnarray}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & \equiv & \int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)\left(1-e^{-cr}\right)^{\kappa}r\,\ud r\nonumber \\
@ -1053,7 +1080,25 @@ reference "eq:binom regularisation function"
\end_inset
From [REF DLMF 10.22.49] one digs
From
\begin_inset Note Note
status open
\begin_layout Plain Layout
[REF DLMF 10.22.49]
\end_layout
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after "10.22.49"
key "NIST:DLMF"
\end_inset
one digs
\begin_inset Note Note
status open
@ -1095,10 +1140,28 @@ status open
\end_inset
[REF DLMF 14.9.5]
\begin_inset CommandInset citation
LatexCommand cite
after "14.9.5"
key "NIST:DLMF"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[REF DLMF 14.9.5]
\end_layout
\begin_layout Standard
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Note Note
status collapsed
@ -1609,7 +1672,7 @@ reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
.
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Note Note
status collapsed
@ -1692,7 +1755,7 @@ end{russian}
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
In fact, Mathematica is usually able to calculate the transforms for specific
values of
\begin_inset Formula $\kappa,q,n$
@ -1720,7 +1783,7 @@ reference "tab:Asymptotical-behaviour-Mathematica"
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Float table
wide false
sideways false
@ -2747,11 +2810,11 @@ Case
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
As shown in a separate note,
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Formula
\[
\pht 0{s_{2,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=-\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
@ -2778,7 +2841,7 @@ Case
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
As shown in separate note (check whether copied correctly)
\begin_inset Formula
\[
@ -2806,7 +2869,7 @@ Case
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
As shown in separate note (check whether copied correctly)
\lang finnish
@ -2843,7 +2906,7 @@ for
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Note Note
status open
@ -3009,7 +3072,7 @@ reference "eq:prudnikov2 eq 2.12.9.14"
3d (TODO)
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\begin_inset Formula
\begin{multline*}
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
@ -3019,6 +3082,11 @@ reference "eq:prudnikov2 eq 2.12.9.14"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
@ -3027,11 +3095,34 @@ Exponentially converging decompositions
\begin_layout Standard
(As in Linton, Thompson, Journal of Computational Physics 228 (2009) 18151829
[LT].)
[LT]
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
\end_inset
.)
\end_layout
\begin_layout Standard
[LT] offers a better decomposition than above.
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT]
\end_layout
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
\end_inset
offers an exponentially convergent decomposition.
Let
\begin_inset Formula
\begin{eqnarray*}
@ -3070,15 +3161,66 @@ convention independent
):
\begin_inset Formula
\[
\sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.
\]
\begin{equation}
\sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.\label{eq:Ewald in 3D short-range part}
\end{equation}
\end_inset
However the other parts in [LT] are convention dependend, so let me fix
it here.
[LT] use the convention [LT(A.7)]
However the other parts in
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT]
\end_layout
\end_inset
are convention dependend, so let me fix it here.
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT]
\end_layout
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
\end_inset
use the convention
\begin_inset CommandInset citation
LatexCommand cite
after "(A.7)"
key "linton_one-_2009"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT(A.7)]
\end_layout
\end_inset
\begin_inset Formula
\begin{eqnarray*}
P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\
@ -3091,7 +3233,25 @@ noting that the former formula is valid also for negative
\begin_inset Formula $m$
\end_inset
(as can be checked by substituting [LT(A.4)]).
(as can be checked by substituting
\begin_inset CommandInset citation
LatexCommand cite
after "(A.4)"
key "linton_one-_2009"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT(A.4)]
\end_layout
\end_inset
).
Therefore
\begin_inset Formula
\begin{eqnarray*}
@ -3101,22 +3261,57 @@ Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\l
\end_inset
Let us substitute this into [LT(4.5)]
Let us substitute this into
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT(4.5)]
\end_layout
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after "(4.5)"
key "linton_one-_2009"
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\\
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(0,\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\\
& = & -\frac{i^{n+1}}{k\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(0,\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}
\end{eqnarray*}
\begin{eqnarray}
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
& = & -\frac{i^{n+1}}{k\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
\end{eqnarray}
\end_inset
which basically replaces an ugly prefactor with another, similarly ugly
one.
See [LT] for the meanings of the
See
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[LT]
\end_layout
\end_inset
for the meanings of the
\begin_inset Formula $pq$
\end_inset
@ -3135,15 +3330,30 @@ which basically replaces an ugly prefactor with another, similarly ugly
\begin_layout Standard
To have it complete,
\begin_inset Formula
\[
\sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.
\]
\begin{equation}
\sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.\label{eq:Ewald in 3D origin part}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
N.B.
Apparently, the formulae might be valid regardless of coordinate system
orientation (then the spherical harmonic arguments would be of course general
\begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)$
\end_inset
,
\begin_inset Formula $Y_{n}^{m}\left(\theta_{b_{pq}},\phi_{\vect{\beta}_{pq}}\right)$
\end_inset
accordingly; but CHECK).
\end_layout
\begin_layout Subsection
Error estimates
\end_layout
@ -3240,7 +3450,25 @@ where the integral is according to mathematica and the error functions were
\begin_inset Formula $\Gamma\left(1-n,z\right)=z^{1-n}E_{n}\left(z\right)$
\end_inset
from [DLMF(8.4.13)].
from
\begin_inset CommandInset citation
LatexCommand cite
after "8.4.13"
key "NIST:DLMF"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[DLMF(8.4.13)]
\end_layout
\end_inset
.
Therefore, the upper estimate for the short-range sum error is
\begin_inset Formula
\begin{eqnarray*}
@ -3388,7 +3616,24 @@ The only diverging factor here is apparently
\begin_inset Formula $\left(\beta_{pq}/k\right)^{n}$
\end_inset
; Mathematica and [DMLF] say
; Mathematica and
\begin_inset CommandInset citation
LatexCommand cite
key "NIST:DLMF"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[DMLF]
\end_layout
\end_inset
say
\begin_inset Formula
\begin{eqnarray*}
\int_{B_{\mathrm{s}}}^{\infty}e^{-\frac{\beta^{2}}{4\eta^{2}}}\beta^{n}\beta\ud\beta & = & \frac{B_{\mathrm{s}}^{n+2}}{2}E_{-\frac{n}{2}}\left(\frac{B_{\mathrm{s}}^{2}}{4\eta^{2}}\right)\\
@ -3406,6 +3651,80 @@ The only diverging factor here is apparently
\end_layout
\begin_layout Standard
For 1D chains, one can use almost the same formulae as above the main
difference is that there are different exponents in some terms of the long-rang
e part so that
\begin_inset Formula $\sigma_{n[1\mathrm{d}]}^{m(1)}/\sigma_{n[2\mathrm{d}]}^{m(1)}=k\gamma_{pq}/2\sqrt{\pi}$
\end_inset
(see
\begin_inset CommandInset citation
LatexCommand cite
after "(4.62)"
key "linton_lattice_2010"
\end_inset
), so
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray}
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k\sqrt{\pi}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
& = & -\frac{i^{n+1}}{2k\mathscr{A}}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j}\nonumber \\
& = & -\frac{i^{n+1}}{\mathscr{A}}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j}\label{eq:1D Ewald in 3D long-range part}
\end{eqnarray}
\end_inset
and of course, in this case the unit cell
\begin_inset Quotes eld
\end_inset
volume
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $\mathscr{A}$
\end_inset
has the dimension of length instead of
\begin_inset Formula $\mbox{length}^{2}$
\end_inset
.
Eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D origin part"
\end_inset
for
\begin_inset Formula $\sigma_{n}^{m(2)},\sigma_{n}^{m(0)}$
\end_inset
can be used directly without modifications.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
One-dimensional lattice sums are provided in [REF LT, sect.
3].
However, these are the
@ -3431,6 +3750,11 @@ where we used
\begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
\end_inset
.
\end_layout
\end_inset
\end_layout
@ -3989,6 +4313,17 @@ reference "eq:1D Dirac comb Ft ordinary freq"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
bibfiles "Ewald summation,Tables"
options "plain"
\end_inset
\end_layout
\end_body

View File

@ -42,6 +42,8 @@ typedef struct {
* what the multipliers from translations.c count with.
*/
// gsl_sf_legendre_t legendre0_type;
double *legendre_plus1; // needed? TODO; in any case, nonzero only for m=0
double *legendre_minus1; // needed? TODO; in any case, nonzero only for m=0
int legendre0_csphase; /* 1 or -1; csphase of the Legendre polynomials saved in legendre0.
This is because I dont't actually consider this fixed in
translations.c */
@ -152,5 +154,29 @@ int ewald32_sigma_short_points_rordered(//NI
);
// 1D sums aligned along z-axis
int ewald31z_sigma_long_points_and_shift (
complex double *target_sigmalr_y, // must be c->nelem_sc long
double *target_sigmalr_y_err, // must be c->nelem_sc long or NULL
const qpms_ewald32_constants_t *c,
double eta, double k, double unitcell_area,
size_t npoints, const double *Kpoints,
double beta,
double particle_shift
);
int ewald31z_sigma_short_points_and_shift(
complex double *target_sigmasr_y, // must be c->nelem_sc long
double *target_sigmasr_y_err, // must be c->nelem_sc long or NULL
const qpms_ewald32_constants_t *c, // N.B. not too useful here
double eta, double k,
size_t npoints, const double *Rpoints,
double beta,
double particle_shift
);
int ewald31z_sigma0(complex double *result, double *err,
const qpms_ewald32_constants_t *c,
double eta, double k
); // exactly the same as ewald32_sigma0
#endif //EWALD_H

View File

@ -1296,6 +1296,121 @@ int qpms_trans_calculator_e32_short_points_and_shift(const qpms_trans_calculator
#endif // 0
#endif // LATTICESUMS32
#ifdef LATTICESUMS31
int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_trans_calculator *c,
complex double * const Adest, double * const Aerr,
complex double * const Bdest, double * const Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
/* qpms_bessel_t J*/ // assume QPMS_HANKEL_PLUS
const double eta, const double k, const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints, // n.b. can't contain 0; TODO automatic recognition and skip
const size_t nKpoints, const cart2_t *Kpoints,
const double beta,//DIFF21
const double particle_shift//DIFF21
)
{
const qpms_y_t nelem2_sc = qpms_lMax2nelem_sc(c->e32c->lMax);
//const qpms_y_t nelem = qpms_lMax2nelem(c->lMax);
const bool doerr = Aerr || Berr;
const bool do_sigma0 = (particle_shift == 0)//DIFF21((particle_shift.x == 0) && (particle_shift.y == 0)); // FIXME ignoring the case where particle_shift equals to lattice vector
complex double *sigmas_short = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_long = malloc(sizeof(complex double)*nelem2_sc);
complex double *sigmas_total = malloc(sizeof(complex double)*nelem2_sc);
double *serr_short, *serr_long, *serr_total;
if(doerr) {
serr_short = malloc(sizeof(double)*nelem2_sc);
serr_long = malloc(sizeof(double)*nelem2_sc);
serr_total = malloc(sizeof(double)*nelem2_sc);
} else serr_short = serr_long = serr_total = NULL;
int retval;
retval = ewald31z_sigma_long_points_and_shift(sigmas_long, serr_long, //DIFF21
c->e32c, eta, k, unitcell_area, nKpoints, Kpoints, beta, particle_shift);
if (retval) abort();
retval = ewald31z_sigma_short_points_and_shift(sigmas_short, serr_short, //DIFF21
c->e32c, eta, k, nRpoints, Rpoints, beta, particle_shift);
if (retval) abort();
for(qpms_y_t y = 0; y < nelem2_sc; ++y)
sigmas_total[y] = sigmas_short[y] + sigmas_long[y];
if (doerr) for(qpms_y_t y = 0; y < nelem2_sc; ++y)
serr_total[y] = serr_short[y] + serr_long[y];
complex double sigma0 = 0; double sigma0_err = 0;
if (do_sigma0) {
retval = ewald31z_sigma0(&sigma0, &sigma0_err, c->e32c, eta, k);//DIFF21
if(retval) abort();
const qpms_l_t y = qpms_mn2y_sc(0,0);
sigmas_total[y] += sigma0;
if(doerr) serr_total[y] += sigma0_err;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
for (qpms_l_t nu = 1; nu <= c->lMax; ++nu) for (qpms_m_t mu = -nu; mu <= nu; ++mu){
const size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
const size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
complex double Asum, Asumc; ckahaninit(&Asum, &Asumc);
double Asumerr, Asumerrc; if(Aerr) kahaninit(&Asumerr, &Asumerrc);
const qpms_m_t mu_m = mu - m;
// TODO skip if ... (N.B. skip will be different for 31z and 32)
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p = n + nu - 2*q;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p);
const complex double multiplier = c->A_multipliers[i][q];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Asum, &Asumc, multiplier * sigma);
if (Aerr) kahanadd(&Asumerr, &Asumerrc, multiplier * serr_total[y_sc]);
}
*(Adest + deststride * desti + srcstride * srci) = Asum;
if (Aerr) *(Aerr + deststride * desti + srcstride * srci) = Asumerr;
// TODO skip if ...
complex double Bsum, Bsumc; ckahaninit(&Bsum, &Bsumc);
double Bsumerr, Bsumerrc; if(Berr) kahaninit(&Bsumerr, &Bsumerrc);
for(qpms_l_t q = 0; q <= qmax; ++q) {
const qpms_l_t p_ = n + nu - 2*q + 1;
const qpms_y_t y_sc = qpms_mn2y_sc(mu_m, p_);
const complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
complex double sigma = sigmas_total[y_sc];
ckahanadd(&Bsum, &Bsumc, multiplier * sigma);
if (Berr) kahanadd(&Bsumerr, &Bsumerrc, multiplier * serr_total[y_sc]);
}
*(Bdest + deststride * desti + srcstride * srci) = Bsum;
if (Berr) *(Berr + deststride * desti + srcstride * srci) = Bsumerr;
++srci;
}
++desti;
srci = 0;
}
}
break;
default:
abort();
}
free(sigmas_short);
free(sigmas_long);
free(sigmas_total);
if(doerr) {
free(serr_short);
free(serr_long);
free(serr_total);
}
return 0;
}
#ifdef LATTICESUMS_OLD
int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculator *c,

View File

@ -10,11 +10,10 @@
#include "bessels.h"
#endif
#ifdef LATTICESUMS32
#if defined LATTICESUMS32 || defined LATTICESUMS31
#include "ewald.h"
#endif
/*
* Argument conventions:
*
@ -78,7 +77,7 @@ typedef struct qpms_trans_calculator {
// TODO
#endif
#ifdef LATTICESUMS32
#if defined LATTICESUMS32 || defined LATTICESUMS31
qpms_ewald32_constants_t *e32c;
#endif
#ifdef LATTICESUMS_OLD
@ -188,12 +187,29 @@ int qpms_trans_calculator_get_AB_arrays_e32_both_points_and_shift(const qpms_tra
const double eta, const double k,
const double unitcell_area,
const size_t nRpoints, const cart2_t *Rpoints,
const size_t nKpoints, const cart2_t *Kpoinst,
const size_t nKpoints, const cart2_t *Kpoints,
const cart2_t beta,
const cart2_t particle_shift
);
#endif //LATTICESUMS32
#ifdef LATTICESUMS31
// e31z means that the particles are positioned along the z-axis;
// their positions and K-values are then denoted by a single z-coordinate
in qpms_trans_calculator_get_AB_arrays_e31z_bost_points_and_shift(const qpms_trans_calculator *c,
complex double *Adest, double *Aerr,
complex double *Bdest, double *Berr,
const ptrdiff_t deststride, const ptrdiff_t srcstride,
const double eta, const double k,
const double unitcell_area, // just lattice period
const size_t nRpoints, const cart2_t *Rpoints,
const size_t nKpoints, const cart2_t *Kpoints,
const double beta,
const double particle_shift
);
#endif
#ifdef QPMS_COMPILE_PYTHON_EXTENSIONS