Start legacy code cleanup

Former-commit-id: 6dd209d837466d33e1749114da672a2a08e09f0c
This commit is contained in:
Marek Nečada 2017-05-08 20:13:34 +03:00
parent 36ed59dcf8
commit d269624b68
4 changed files with 1076 additions and 959 deletions

View File

@ -31,5 +31,5 @@ k_0 = omega * math.sqrt(epsilon_b) / c
output_prefix = '/tmp/diracpoints-newdata2/%d/' % maxlayer
os.makedirs(output_prefix, exist_ok=True)
qpms.hexlattice_precalc_AB_save3(file=output_prefix+str(omega_eV), lMax=lMax, k_hexside=k_0*hexside,
qpms.hexlattice_precalc_AB_save(file=output_prefix+str(omega_eV), lMax=lMax, k_hexside=k_0*hexside,
maxlayer=maxlayer, savepointinfo=True)

View File

@ -170,74 +170,9 @@ def generate_trianglepoints_hexcomplement(maxlayer, v3d = True, circular = True,
from qpms_c import get_mn_y, trans_calculator
from .qpms_p import Ã, B̃, cart2sph
from .qpms_p import cart2sph
def hexlattice_precalc_AB_save2(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
params = {
'lMax' : lMax,
'k_hexside' : k_hexside,
'maxlayer' : maxlayer,
'circular' : circular,
'savepointinfo' : savepointinfo,
'J_scat' : J_scat
}
tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
my, ny = get_mn_y(lMax)
nelem = len(my)
a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
tc = trans_calculator(lMax)
y = np.arange(nelem)
points = tpdict['points'][tpdict['nmi']]
d_i2j = cart2sph(points)
a_self_nm, b_self_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
points = tpdict['points'][tpdict['mi'][0]]
d_i2j = cart2sph(points)
a_self_m0, b_self_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
points = tphcdict['points'][tphcdict['nmi']]
d_i2j = cart2sph(points)
a_d2u_nm, b_d2u_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
points = tphcdict['points'][tphcdict['mi'][0]]
d_i2j = cart2sph(points)
a_d2u_m0, b_d2u_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
tosave = {
'a_self_nm' : a_self_nm,
'a_self_m0' : a_self_m0,
'b_self_nm' : b_self_nm,
'b_self_m0' : b_self_m0,
'a_d2u_nm' : a_d2u_nm,
'a_d2u_m0' : a_d2u_m0,
'b_d2u_nm' : b_d2u_nm,
'b_d2u_m0' : b_d2u_m0,
'precalc_params' : params
}
if savepointinfo:
tosave['tp_points'] = tpdict['points'],
tosave['tp_si'] = tpdict['si'],
tosave['tp_mi'] = tpdict['mi'],
tosave['tp_nmi'] = tpdict['nmi']
tosave['tphc_points'] = tphcdict['points'],
tosave['tphc_ti'] = tphcdict['ti'],
tosave['tphc_mi'] = tphcdict['mi'],
tosave['tphc_nmi'] = tphcdict['nmi']
np.savez(file, **tosave)
def hexlattice_precalc_AB_save3(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
def hexlattice_precalc_AB_save(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
params = {
'lMax' : lMax,
'k_hexside' : k_hexside,
@ -302,82 +237,6 @@ def hexlattice_precalc_AB_save3(file, lMax, k_hexside, maxlayer, circular=True,
tosave['tphc_nmi'] = tphcdict['nmi']
np.savez(file, **tosave)
def hexlattice_precalc_AB_save(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
params = {
'lMax' : lMax,
'k_hexside' : k_hexside,
'maxlayer' : maxlayer,
'circular' : circular,
'savepointinfo' : savepointinfo,
'J_scat' : J_scat
}
tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
my, ny = get_mn_y(lMax)
nelem = len(my)
a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
points = tpdict['points'][tpdict['nmi']]
for j in range(points.shape[0]):
d_i2j = cart2sph(points[j])
for yi in range(nelem):
for yj in range(nelem):
a_self_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
b_self_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
points = tpdict['points'][tpdict['mi'][0]]
for j in range(points.shape[0]):
d_i2j = cart2sph(points[j])
for yi in range(nelem):
for yj in range(nelem):
a_self_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
b_self_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
points = tphcdict['points'][tphcdict['nmi']]
for j in range(points.shape[0]):
d_i2j = cart2sph(points[j])
for yi in range(nelem):
for yj in range(nelem):
a_d2u_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
b_d2u_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
points = tphcdict['points'][tphcdict['mi'][0]]
for j in range(points.shape[0]):
d_i2j = cart2sph(points[j])
for yi in range(nelem):
for yj in range(nelem):
a_d2u_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
b_d2u_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
tosave = {
'a_self_nm' : a_self_nm,
'a_self_m0' : a_self_m0,
'b_self_nm' : b_self_nm,
'b_self_m0' : b_self_m0,
'a_d2u_nm' : a_d2u_nm,
'a_d2u_m0' : a_d2u_m0,
'b_d2u_nm' : b_d2u_nm,
'b_d2u_m0' : b_d2u_m0,
'precalc_params' : params
}
if savepointinfo:
tosave['tp_points'] = tpdict['points'],
tosave['tp_si'] = tpdict['si'],
tosave['tp_mi'] = tpdict['mi'],
tosave['tp_nmi'] = tpdict['nmi']
tosave['tphc_points'] = tphcdict['points'],
tosave['tphc_ti'] = tphcdict['ti'],
tosave['tphc_mi'] = tphcdict['mi'],
tosave['tphc_nmi'] = tphcdict['nmi']
np.savez(file, **tosave)
def hexlattice_precalc_AB_loadunwrap(file, tpdict = None, tphcdict = None, return_points = False):
npz = np.load(file)
precalc_params = npz['precalc_params'][()]

1071
qpms/legacy.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -11,6 +11,7 @@ import cmath
import quaternion, spherical_functions as sf # because of the Wigner matrices
import sys, time
"""
'''
Try to import numba. Its pre-0.28.0 versions can not handle functions
containing utf8 identifiers, so we keep track about that.
@ -43,7 +44,7 @@ def ujit(f):
return numba.jit(f)
else:
return f
"""
# Coordinate transforms for arrays of "arbitrary" shape
#@ujit
@ -473,274 +474,6 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
# Functions copied from scattering_xu, additionaly normalized
from py_gmm.gmm import vec_trans as vc
#@ujit
def q_max(m,n,μ,ν):
return min(n,ν,(n+ν-abs(m+μ))/2)
q_max_v = np.vectorize(q_max)
# returns array with indices corresponding to q
# argument q does nothing for now
#@ujit
def a_q(m,n,μ,ν,q = None):
qm=q_max(m,n,μ,ν)
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
if(err):
print("m,n,μ,ν,qm = ",m,n,μ,ν,qm)
raise ValueError('Something bad in the fortran subroutine gaunt_xu happened')
return res
a_q_v = np.vectorize(a_q)
# All arguments are single numbers (for now)
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
#@ujit
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The à translation coefficient for spherical vector waves.
Parameters
----------
m, n: int
The indices (degree and order) of the destination basis.
μ, ν: int
The indices of the source basis wave.
kdlj, θlj, φlj: float
The spherical coordinates of the relative position of
the new center vs. the old one (R_new - R_old);
the distance has to be already multiplied by the wavenumber!
r_ge_d: TODO
J: 1, 2, 3 or 4
Type of the wave in the old center.
Returns
-------
TODO
Bugs
----
gevero's gaunt coefficient implementation fails for large m, n (the unsafe territory
is somewhere around -72, 80)
"""
exponent=(math.lgamma(2*n+1)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
+math.lgamma(n+ν+m-μ+1)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
+math.lgamma(n+ν+1) - math.lgamma(2*(n+ν)+1))
presum = math.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n) / (4*n)
qmax = math.floor(q_max(-m,n,μ,ν)) #nemá tu být +m?
q = np.arange(qmax+1, dtype=int)
# N.B. -m !!!!!!
a1q = a_q(-m,n,μ,ν) # there is redundant calc. of qmax
ã1q = a1q / a1q[0]
p = n+ν-2*q
if(r_ge_d):
J = 1
zp = zJn(n+ν,kdlj,J)[0][p]
Pp = lpmv(μ-m,p,math.cos(θlj))
summandq = (n*(n+1) + ν*(ν+1) - p*(p+1)) * (-1)**q * ã1q * zp * Pp
# Taylor normalisation v2, proven to be equivalent (NS which is better)
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
presum = presum / prenormratio
# Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
#@ujit
def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The B̃ translation coefficient for spherical vector waves.
Parameters
----------
m, n: int
The indices (degree and order) of the destination basis.
μ, ν: int
The indices of the source basis wave.
kdlj, θlj, φlj: float
The spherical coordinates of the relative position of
the new center vs. the old one (R_new - R_old);
the distance has to be already multiplied by the wavenumber!
r_ge_d: TODO
J: 1, 2, 3 or 4
Type of the wave in the old center.
Returns:
--------
TODO
"""
exponent=(math.lgamma(2*n+3)-math.lgamma(n+2)+math.lgamma(2*ν+3)-math.lgamma(ν+2)
+math.lgamma(n+ν+m-μ+2)-math.lgamma(n-m+1)-math.lgamma(ν+μ+1)
+math.lgamma(n+ν+2) - math.lgamma(2*(n+ν)+3))
presum = math.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n+1) / (
(4*n)*(n+1)*(n+m+1))
Qmax = math.floor(q_max(-m,n+1,μ,ν))
q = np.arange(Qmax+1, dtype=int)
if (μ == ν): # it would disappear in the sum because of the factor (ν-μ) anyway
ã2q = 0
else:
a2q = a_q(-m-1,n+1,μ+1,ν)
ã2q = a2q / a2q[0]
a3q = a_q(-m,n+1,μ,ν)
ã3q = a3q / a3q[0]
#print(len(a2q),len(a3q))
p = n+ν-2*q
if(r_ge_d):
J = 1
zp_ = zJn(n+1+ν,kdlj,J)[0][p+1] # je ta +1 správně?
Pp_ = lpmv(μ-m,p+1,math.cos(θlj))
summandq = ((2*(n+1)*(ν-μ)*ã2q
-(-ν*(ν+1) - n*(n+3) - 2*μ*(n+1)+p*(p+3))* ã3q)
*(-1)**q * zp_ * Pp_)
# Taylor normalisation v2, proven to be equivalent
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
math.lgamma(n+m+1)-math.lgamma(n-m+1)+math.lgamma(ν-μ+1)-math.lgamma(ν+μ+1)))
presum = presum / prenormratio
## Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# vectorised versions - conservative
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
#@ujit
def Ã_v0(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The à translation coefficient for spherical vector waves.
Parameters
----------
m, n: int
The indices (degree and order) of the destination basis.
μ, ν: int
The indices of the source basis wave.
kdlj, θlj, φlj: float
The spherical coordinates of the relative position of
the new center vs. the old one (R_new - R_old);
the distance has to be already multiplied by the wavenumber!
r_ge_d: TODO
J: 1, 2, 3 or 4
Type of the wave in the old center.
Returns
-------
TODO
Bugs
----
gevero's gaunt coefficient implementation fails for large m, n (the unsafe territory
is somewhere around -72, 80)
"""
lMax = max(np.amax(n),np.amax(ν))
exponent=(gammaln(2*n+1)-gammaln(n+2)+gammaln(2*ν+3)-gammaln(ν+2)
+gammaln(n+ν+m-μ+1)-gammaln(n-m+1)-gammaln(ν+μ+1)
+gammaln(n+ν+1) - gammaln(2*(n+ν)+1))
presum = np.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n) / (4*n)
qmax = np.floor(q_max(-m,n,μ,ν)) #nemá tu být +m?
q = np.arange(qmax+1, dtype=int)
# N.B. -m !!!!!!
a1q = a_q_v(-m,n,μ,ν) # there is redundant calc. of qmax
ã1q = a1q / a1q[0]
p = n+ν-2*q
if(r_ge_d):
J = 1
zp = zJn(n+ν,kdlj,J)[0][p]
Pp = lpmv(μ-m,p,np.cos(θlj))
summandq = (n*(n+1) + ν*(ν+1) - p*(p+1)) * (-1)**q * ã1q * zp * Pp
# Taylor normalisation v2, proven to be equivalent (NS which is better)
prenormratio = 1j**(ν-n) * np.sqrt(((2*ν+1)/(2*n+1))* np.exp(
gammaln(n+m+1)-gammaln(n-m+1)+gammaln(ν-μ+1)-gammaln(ν+μ+1)))
presum = presum / prenormratio
# Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
#@ujit
def B̃_v(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The B̃ translation coefficient for spherical vector waves.
Parameters
----------
m, n: int
The indices (degree and order) of the destination basis.
μ, ν: int
The indices of the source basis wave.
kdlj, θlj, φlj: float
The spherical coordinates of the relative position of
the new center vs. the old one (R_new - R_old);
the distance has to be already multiplied by the wavenumber!
r_ge_d: TODO
J: 1, 2, 3 or 4
Type of the wave in the old center.
Returns:
--------
TODO
"""
exponent=(gammaln(2*n+3)-gammaln(n+2)+gammaln(2*ν+3)-gammaln(ν+2)
+gammaln(n+ν+m-μ+2)-gammaln(n-m+1)-gammaln(ν+μ+1)
+gammaln(n+ν+2) - gammaln(2*(n+ν)+3))
presum = math.exp(exponent)
presum = presum * np.exp(1j*(μ-m)*φlj) * (-1)**m * 1j**(ν+n+1) / (
(4*n)*(n+1)*(n+m+1))
Qmax = math.floor(q_max(-m,n+1,μ,ν))
q = np.arange(Qmax+1, dtype=int)
if (μ == ν): # it would disappear in the sum because of the factor (ν-μ) anyway
ã2q = 0
else:
a2q = a_q(-m-1,n+1,μ+1,ν)
ã2q = a2q / a2q[0]
a3q = a_q(-m,n+1,μ,ν)
ã3q = a3q / a3q[0]
#print(len(a2q),len(a3q))
p = n+ν-2*q
if(r_ge_d):
J = 1
zp_ = zJn(n+1+ν,kdlj,J)[0][p+1] # je ta +1 správně?
Pp_ = lpmv(μ-m,p+1,math.cos(θlj))
summandq = ((2*(n+1)*(ν-μ)*ã2q
-(-ν*(ν+1) - n*(n+3) - 2*μ*(n+1)+p*(p+3))* ã3q)
*(-1)**q * zp_ * Pp_)
# Taylor normalisation v2, proven to be equivalent
prenormratio = 1j**(ν-n) * math.sqrt(((2*ν+1)/(2*n+1))* math.exp(
gammaln(n+m+1)-gammaln(n-m+1)+gammaln(ν-μ+1)-gammaln(ν+μ+1)))
presum = presum / prenormratio
## Taylor normalisation
#prenormmn = math.sqrt((2*n + 1)*math.factorial(n-m)/(4*π*factorial(n+m)))
#prenormμν = math.sqrt((2*ν + 1)*math.factorial(ν-μ)/(4*π*factorial(ν+μ)))
#presum = presum * prenormμν / prenormmn
return presum * np.sum(summandq)
# In[7]:
# Material parameters
#@ujit
@ -868,79 +601,6 @@ def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
return 1j* k_e*np.sum(G_y,axis=0)
#@ujit
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
the result indices are in the source-destination order
TODO
"""
my, ny = get_mn_y(nmax)
nelem = len(my)
#source to origin
so_sph = cart2sph(-source_cart)
kd_so = k_e * so_sph[0]
θ_so = so_sph[1]
φ_so = so_sph[2]
# Decomposition of the source N_0,1, N_-1,1, and N_1,1 in the nanoparticle center
p_0 = np.empty((nelem), dtype=np.complex_)
q_0 = np.empty((nelem), dtype=np.complex_)
p_minus = np.empty((nelem), dtype=np.complex_)
q_minus = np.empty((nelem), dtype=np.complex_)
p_plus = np.empty((nelem), dtype=np.complex_)
q_plus = np.empty((nelem), dtype=np.complex_)
for y in range(nelem):
m = my[y]
n = ny[y]
p_0[y] = Ã(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_0[y] = B̃(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
p_minus[y] = Ã(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_minus[y] = B̃(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
p_plus[y] = Ã(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
q_plus[y] = B̃(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
a_0 = RV[ny] * p_0
b_0 = RH[ny] * q_0
a_plus = RV[ny] * p_plus
b_plus = RH[ny] * q_plus
a_minus = RV[ny] * p_minus
b_minus = RH[ny] * q_minus
orig2dest_sph = cart2sph(dest_cart)
orig2dest_sph[0] = k_e*orig2dest_sph[0]
M_dest_y, N_dest_y = vswf_yr1(orig2dest_sph,nmax,J=J_scat)
# N.B. these are in the local cartesian coordinates (r̂,θ̂,φ̂)
N_dest_0 = np.sum(a_0[:,ň] * N_dest_y, axis=-2)
M_dest_0 = np.sum(b_0[:,ň] * M_dest_y, axis=-2)
N_dest_plus = np.sum(a_plus[:,ň] * N_dest_y, axis=-2)
M_dest_plus = np.sum(b_plus[:,ň] * M_dest_y, axis=-2)
N_dest_minus = np.sum(a_minus[:,ň]* N_dest_y, axis=-2)
M_dest_minus = np.sum(b_minus[:,ň]* M_dest_y, axis=-2)
prefac = math.sqrt(1/(4*3*π))#/ε_0
G_sourcez_dest = prefac * (N_dest_0+M_dest_0)
G_sourcex_dest = prefac * (N_dest_minus+M_dest_minus-N_dest_plus-M_dest_plus)/math.sqrt(2)
G_sourcey_dest = prefac * (N_dest_minus+M_dest_minus+N_dest_plus+M_dest_plus)/(1j*math.sqrt(2))
G_source_dest = np.array([G_sourcex_dest, G_sourcey_dest, G_sourcez_dest])
# To global cartesian coordinates:
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
return G_source_dest
#@ujit
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
TODO
"""
RH, RV, TH, TV = mie_coefficients(a=a, nmax=nmax, k_i=k_i, k_e=k_e, μ_i=μ_i, μ_e=μ_e, J_ext=J_ext, J_scat=J_scat)
return G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i, μ_e, J_ext, J_scat)
#TODO
def cross_section_Mie_precalc():
pass
def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
pass
# In[9]:
# From PRL 112, 253601 (1)
#@ujit
@ -1255,476 +915,3 @@ def apply_ndmatrix_left(matrix,tensor,axes):
matrix = np.tensordot(matrix, tensor, axes=([-N+axn for axn in range(N)],axes))
matrix = np.moveaxis(matrix, range(N), axes)
return matrix
####################
# Array simulations
####################
#@jit
def nelem2lMax(nelem):
"""
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
it nelem does not come from positive integer lMax.
"""
lMax = round(math.sqrt(1+nelem) - 1)
if ((lMax < 1) or ((lMax + 2) * lMax != nelem)):
return 0
else:
return lMax
def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #saveto = None
):
"""
Solves the plane wave linear scattering problem for a structure of "non-touching" particles
for one frequency and arbitrary number K of incoming plane waves.
Parameters
----------
omega : positive number
The frequency of the field.
epsilon_b : complex number
Permittivity of the background medium (which has to be isotropic).
positions : (N,3)-shaped real array
Cartesian positions of the particles.
TMatrices : (N,2,nelem,2,nelem) or compatible
The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
If all the particles are identical and equally oriented, only one T-matrix can be given.
nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
is calculated.
k_dirs : (K,3)-shaped real array or compatible
The direction of the incident field wave vector, normalized to one.
E_0s : (K,3)-shaped complex array or compatible
The electric intensity amplitude of the incident field.
Returns
-------
ab : (K, N, 2, nelem)-shaped complex array
The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle
# Fuck this, it will be wiser to make separate function to calculate those from ab:
# sigma_xxx : TODO (K, 2, nelem)
# TODO partial (TODO which?) cross-section for each type of outgoing waves, summed over all
# nanoparticles (total cross section is given by the sum of this.)
"""
nelem = TMatrices.shape[-1]
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
lMax = nelem2lMax(nelem)
if not lMax:
raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
# TODO perhaps more checks.
raise Error('Not implemented.')
pass
import warnings
#@ujit
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
"""
Solves the plane wave linear scattering problem for a rectangular array of particles
for one frequency and arbitrary number K of incoming plane waves.
Parameters
----------
omega : positive number
The frequency of the field.
epsilon_b : complex number
Permittivity of the background medium (which has to be isotropic).
xN, yN : positive integers
Particle numbers in the x and y dimensions
xd, yd : positive numbers
Periodicities in the x and y direction
TMatrices : (xN, yN,2,nelem,2,nelem) or compatible or (2,nelem,2,nelem)
The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
If all the particles are identical and equally oriented, only one T-matrix can be given.
nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
is calculated.
Electric wave index is 0, magnetic wave index is 1.
k_dirs : (K,3)-shaped real array or compatible
The direction of the incident field wave vector, normalized to one.
E_0s : (K,3)-shaped complex array or compatible
The electric intensity amplitude of the incident field.
return_pq_0 : bool
Return also the multipole decomposition coefficients of the incoming plane wave.
return_pq : bool NOT IMPLEMENTED
Return also the multipole decomposition coefficients of the field incoming to each
particle (inc. the field scattered from other particles.
return_xy : bool
Return also the cartesian x, y positions of the particles.
watch_time : bool
Inform about the progress on stderr
Returns
-------
ab : (K, xN, yN, 2, nelem)-shaped complex array
The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle.
If none of return_pq or return_xy is set, the array is not enclosed in a tuple.
pq_0 : (K, xN, yn, 2, nelem)-shaped complex array
The p_0 (electric wave), b_0 (magnetic wave) coefficients of the incoming plane wave for each particle.
pq : (K, xN, yN, 2, nelem)-shaped complex array NOT IMPLEMENTED
The p (electric wave), q (magnetic wave) coefficients of the total exciting field
for each particle (including the field scattered from other particles)
x, y : (xN, yN)-shaped real array
The x,y positions of the nanoparticles.
"""
if (watch_time):
timec = time.time()
print('%.4f: running scatter_plane_wave_rectarray' % timec, file = sys.stderr)
sys.stderr.flush()
nelem = TMatrices.shape[-1]
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
lMax = nelem2lMax(nelem)
if not lMax:
raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
if (watch_time):
print('xN = %d, yN = %d, lMax = %d' % (xN, yN, lMax), file = sys.stderr)
sys.stderr.flush()
# TODO perhaps more checks.
k_out = omega * math.sqrt(epsilon_b) / c # wave number
my, ny = get_mn_y(lMax)
N = yN * xN
J_scat=3
J_ext=1
# Do something with this ugly indexing crap
xind, yind = np.meshgrid(np.arange(xN),np.arange(yN), indexing='ij')
xind = xind.flatten()
yind = yind.flatten()
xyind = np.stack((xind, yind, np.zeros((xind.shape),dtype=int)),axis=-1)
cart_lattice=xyind * np.array([xd, yd, 0])
x=cart_lattice[:,0]
y=cart_lattice[:,1]
xyind = xyind[:,0:2]
# Lattice speedup
if (watch_time):
timec = time.time()
print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr)
sys.stderr.flush()
Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
for yl in range(nelem): # source
for xij in range(2*xN):
for yij in range(2*yN):
for yj in range(nelem): #dest
if((yij != yN) or (xij != xN)):
d_l2j = cart2sph(np.array([(xij-xN)*xd, (yij-yN)*yd, 0]))
Agrid[yj, xij, yij, yl] = Ã(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
# Translation coefficient matrix T
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix'
% (timec, timec-timecold), file = sys.stderr)
sys.stderr.flush()
transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_)
for l in range(N):
xil, yil = xyind[l]
for j in range(N):
xij, yij = xyind[j]
if (l!=j):
transmat[j,0,:,l,0,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,0,:,l,1,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,0,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
Agrid = None
Bgrid = None
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix filled (elapsed %.2f s), building the interaction matrix'
% (timec, timec-timecold), file=sys.stderr)
sys.stderr.flush()
# Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-)
MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_)
TMatrices = np.broadcast_to(TMatrices, (xN, yN, 2, nelem, 2, nelem))
for j in range(N): # I wonder how this can be done without this loop...
xij, yij = xyind[j]
MT[j] = np.tensordot(TMatrices[xij, yij],transmat[j],axes=([-2,-1],[0,1]))
MT.shape = (N*2*nelem, N*2*nelem)
leftmatrix = np.identity(N*2*nelem) - MT
MT = None
if (watch_time):
timecold = timec
timec = time.time()
print('%.4f: interaction matrix complete (elapsed %.2f s)' % (timec, timec-timecold),
file=sys.stderr)
sys.stderr.flush()
if ((1 == k_dirs.ndim) and (1 == E_0s.ndim)):
k_cart = k_dirs * k_out # wave vector of the incident plane wave
pq_0 = np.zeros((N,2,nelem), dtype=np.complex_)
p_y0, q_y0 = plane_pq_y(lMax, k_cart, E_0s)
pq_0[:,0,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * p_y0[ň, :]
pq_0[:,1,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * q_y0[ň, :]
if (return_pq_0):
pq_0_arr = pq_0
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
#if (watch_time):
# print('%4f: building the interaction matrix' % time.time(), file=sys.stderr)
for j in range(N): # I wonder how this can be done without this loop...
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
MP_0.shape = (N*2*nelem,)
if (watch_time):
timecold = time.time()
print('%4f: solving the scattering problem for single incoming wave' % timecold,
file = sys.stderr)
sys.stderr.flush()
ab = np.linalg.solve(leftmatrix, MP_0)
if watch_time:
timec = time.time()
print('%4f: solved (elapsed %.2f s)' % (timec, timec-timecold), file=sys.stderr)
sys.stderr.flush()
ab.shape = (xN, yN, 2, nelem)
else:
# handle "broadcasting" for k, E
if 1 == k_dirs.ndim:
k_dirs = k_dirs[ň,:]
if 1 == E_0s.ndim:
E_0s = E_0s[ň,:]
K = max(E_0s.shape[-2], k_dirs.shape[-2])
k_dirs = np.broadcast_to(k_dirs,(K,3))
E_0s = np.broadcast_to(E_0s, (K,3))
# А ну, чики-брики и в дамки!
if watch_time:
timecold = time.time()
print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr)
sys.stderr.flush()
lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True)
leftmatrix = None
if watch_time:
timec = time.time()
print('%.4f: factorization complete (elapsed %.2f s)' % (timec, timec-timecold),
file = sys.stderr)
print('%.4f: solving the scattering problem for %d incoming waves' % (timec, K),
file=sys.stderr)
sys.stderr.flush()
timecold = timec
if (return_pq_0):
pq_0_arr = np.zeros((K,N,2,nelem), dtype=np.complex_)
ab = np.empty((K,N*2*nelem), dtype=complex)
for ki in range(K):
k_cart = k_dirs[ki] * k_out
pq_0 = np.zeros((N,2,nelem), dtype=np.complex_)
p_y0, q_y0 = plane_pq_y(lMax, k_cart, E_0s[ki])
pq_0[:,0,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * p_y0[ň, :]
pq_0[:,1,:] = np.exp(1j*np.sum(k_cart[ň,:]*cart_lattice,axis=-1))[:, ň] * q_y0[ň, :]
if (return_pq_0):
pq_0_arr[ki] = pq_0
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
for j in range(N): # I wonder how this can be done without this loop...
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
MP_0.shape = (N*2*nelem,)
ab[ki] = scipy.linalg.lu_solve(lupiv, MP_0)
ab.shape = (K, xN, yN, 2, nelem)
if watch_time:
timec = time.time()
print('%.4f: done (elapsed %.2f s)' % (timec, timec-timecold),file = sys.stderr)
sys.stderr.flush()
if not (return_pq_0 + return_pq + return_xy):
return ab
returnlist = [ab]
if (return_pq_0):
pq_0_arr.shape = ab.shape
returnlist.append(pq_0_arr)
if (return_pq):
warnings.warn("return_pq not implemented, ignoring")
# returnlist.append(pq_arr)
if (return_xy):
returnlist.append(x)
returnlist.append(y)
return tuple(returnlist)
import warnings
#@ujit
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1,
return_pq= False, return_xy = False, watch_time = False):
"""
Solves the plane wave linear scattering problem for a rectangular array of particles
for one frequency and constant exciting spherical waves throughout the array.
Parameters
----------
omega : positive number
The frequency of the field.
epsilon_b : complex number
Permittivity of the background medium (which has to be isotropic).
xN, yN : positive integers
Particle numbers in the x and y dimensions
xd, yd : positive numbers
Periodicities in the x and y direction
TMatrices : (xN, yN,2,nelem,2,nelem) or compatible or (2,nelem,2,nelem)
The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
If all the particles are identical and equally oriented, only one T-matrix can be given.
nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
is calculated.
Electric wave index is 0, magnetic wave index is 1.
pq_0_c : (nelem)-shaped complex array or compatible
The initial excitation coefficients for the ("complex") multipole waves, in Taylor's convention.
return_pq : bool NOT IMPLEMENTED
Return also the multipole decomposition coefficients of the field incoming to each
particle (inc. the field scattered from other particles.
return_xy : bool
Return also the cartesian x, y positions of the particles.
watch_time : bool
Inform about the progress on stderr
Returns
-------
ab : (nelem, xN, yN, 2, nelem)-shaped complex array
The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle.
If none of return_pq or return_xy is set, the array is not enclosed in a tuple.
pq : (nelem, xN, yN, 2, nelem)-shaped complex array NOT IMPLEMENTED
The p (electric wave), q (magnetic wave) coefficients of the total exciting field
for each particle (including the field scattered from other particles)
x, y : (xN, yN)-shaped real array
The x,y positions of the nanoparticles.
"""
if (watch_time):
timec = time.time()
print('%.4f: running scatter_plane_wave_rectarray' % timec, file = sys.stderr)
sys.stderr.flush()
nelem = TMatrices.shape[-1]
if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
lMax = nelem2lMax(nelem)
if not lMax:
raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
if (watch_time):
print('xN = %d, yN = %d, lMax = %d' % (xN, yN, lMax), file = sys.stderr)
sys.stderr.flush()
# TODO perhaps more checks.
k_out = omega * math.sqrt(epsilon_b) / c # wave number
my, ny = get_mn_y(lMax)
N = yN * xN
J_scat=3
J_ext=1
# Do something with this ugly indexing crap
xind, yind = np.meshgrid(np.arange(xN),np.arange(yN), indexing='ij')
xind = xind.flatten()
yind = yind.flatten()
xyind = np.stack((xind, yind, np.zeros((xind.shape),dtype=int)),axis=-1)
cart_lattice=xyind * np.array([xd, yd, 0])
x=cart_lattice[:,0]
y=cart_lattice[:,1]
xyind = xyind[:,0:2]
# Lattice speedup
if (watch_time):
timec = time.time()
print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr)
sys.stderr.flush()
Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
for yl in range(nelem): # source
for xij in range(2*xN):
for yij in range(2*yN):
for yj in range(nelem): #dest
if((yij != yN) or (xij != xN)):
d_l2j = cart2sph(np.array([(xij-xN)*xd, (yij-yN)*yd, 0]))
Agrid[yj, xij, yij, yl] = Ã(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
# Translation coefficient matrix T
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix'
% (timec, timec-timecold), file = sys.stderr)
sys.stderr.flush()
transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_)
for l in range(N):
xil, yil = xyind[l]
for j in range(N):
xij, yij = xyind[j]
if (l!=j):
transmat[j,0,:,l,0,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,0,:,l,1,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,0,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
Agrid = None
Bgrid = None
if (watch_time):
timecold = timec
timec = time.time()
print('%4f: translation matrix filled (elapsed %.2f s), building the interaction matrix'
% (timec, timec-timecold), file=sys.stderr)
sys.stderr.flush()
# Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-)
MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_)
TMatrices = np.broadcast_to(TMatrices, (xN, yN, 2, nelem, 2, nelem))
for j in range(N): # I wonder how this can be done without this loop...
xij, yij = xyind[j]
MT[j] = np.tensordot(TMatrices[xij, yij],transmat[j],axes=([-2,-1],[0,1]))
MT.shape = (N*2*nelem, N*2*nelem)
leftmatrix = np.identity(N*2*nelem) - MT
MT = None
if (watch_time):
timecold = timec
timec = time.time()
print('%.4f: interaction matrix complete (elapsed %.2f s)' % (timec, timec-timecold),
file=sys.stderr)
sys.stderr.flush()
# А ну, чики-брики и в дамки!
if watch_time:
timecold = time.time()
print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr)
sys.stderr.flush()
lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True)
leftmatrix = None
if watch_time:
timec = time.time()
print('%.4f: factorization complete (elapsed %.2f s)' % (timec, timec-timecold),
file = sys.stderr)
print('%.4f: solving the scattering problem for %d incoming multipoles' % (timec, nelem*2),
file=sys.stderr)
sys.stderr.flush()
timecold = timec
if(pq_0_c == 1):
pq_0_c = np.full((2,nelem),1)
ab = np.empty((2,nelem,N*2*nelem), dtype=complex)
for N_or_M in range(2):
for yy in range(nelem):
pq_0 = np.zeros((2,nelem), dtype=np.complex_)
pq_0[N_or_M,yy] = pq_0_c[N_or_M,yy]
pq_0 = np.broadcast_to(pq_0, (N, 2, nelem))
MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
for j in range(N): # I wonder how this can be done without this loop...
xij, yij = xyind[j]
MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
MP_0.shape = (N*2*nelem,)
ab[N_or_M, yy] = scipy.linalg.lu_solve(lupiv, MP_0)
ab.shape = (2,nelem, xN, yN, 2, nelem)
if watch_time:
timec = time.time()
print('%.4f: done (elapsed %.2f s)' % (timec, timec-timecold),file = sys.stderr)
sys.stderr.flush()
if not (return_pq + return_xy):
return ab
returnlist = [ab]
if (return_pq):
warnings.warn("return_pq not implemented, ignoring")
# returnlist.append(pq_arr)
if (return_xy):
returnlist.append(x)
returnlist.append(y)
return tuple(returnlist)