From d2d0eba40cef6af1a38f9f639423b5915efcfe70 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Mon, 29 Jul 2019 21:38:43 +0300 Subject: [PATCH] Use higher precision in some 2D irrep matrices. Former-commit-id: 9d6fa78f2157601fbec4fee16a1c51c093333d9b --- qpms/symmetries.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/qpms/symmetries.py b/qpms/symmetries.py index 9efac0e..303585d 100644 --- a/qpms/symmetries.py +++ b/qpms/symmetries.py @@ -10,6 +10,8 @@ import numbers import re ň = None +s3long = np.sqrt(np.longdouble(3.)) + def grouprep_try(tdict, src, im, srcgens, imgens, immultop = None, imcmp = None): tdict[src] = im for i in range(len(srcgens)): @@ -192,13 +194,13 @@ def generate_grouprep(srcgroup, im_identity, srcgens, imgens, immultop = None, i # matrices appearing in 2d representations of common groups as used in Bradley, Cracknell p. 61 (with arabic names instead of greek, because lambda is a keyword) epsilon = np.eye(2) -alif = np.array(((-1/2,-sqrt(3)/2),(sqrt(3)/2,-1/2))) -bih = np.array(((-1/2,sqrt(3)/2),(-sqrt(3)/2,-1/2))) +alif = np.array(((-1/2,-s3long/2),(s3long/2,-1/2))) +bih = np.array(((-1/2,s3long/2),(-s3long/2,-1/2))) kaf = np.array(((0,1),(1,0))) lam = np.array(((1,0),(0,-1))) ra = np.array(((0,-1),(1,0))) -mim = np.array(((-1/2,-sqrt(3)/2),(-sqrt(3)/2,1/2))) -nun = np.array(((-1/2,sqrt(3)/2),(sqrt(3)/2,1/2))) +mim = np.array(((-1/2,-s3long/2),(-s3long/2,1/2))) +nun = np.array(((-1/2,s3long/2),(s3long/2,1/2)))