From d5b6f8f5d426f26de2e3eeb70b1f3b1cafb69b2d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Wed, 31 Jul 2019 06:40:25 +0300 Subject: [PATCH] Infinite lattices WIP Former-commit-id: 39facbe563492f4fce54104fd4cf16d9cf1b951b --- lepaper/infinite.lyx | 33 ++++++++++++++++++++++++++++++--- 1 file changed, 30 insertions(+), 3 deletions(-) diff --git a/lepaper/infinite.lyx b/lepaper/infinite.lyx index df709e3..141050b 100644 --- a/lepaper/infinite.lyx +++ b/lepaper/infinite.lyx @@ -320,6 +320,33 @@ noprefix "false" . \end_layout +\begin_layout Standard +As in the case of a finite system, eq. + can be written in a shorter block-matrix form, +\begin_inset Formula +\[ +\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right) +\] + +\end_inset + + Eq. + +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:Multiple-scattering problem unit cell" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + can be used to calculate electromagnetic response of the structure to external + quasiperiodic driving field – most notably a plane wave. + However, if one sets the right the right-hand side to zero, it can also + be used to find electromagnetic lattice modes +\end_layout + \begin_layout Subsection Computing the Fourier sum of the translation operator \begin_inset CommandInset label @@ -590,8 +617,8 @@ reference "eq:W sum in reciprocal space" \begin_inset Formula \begin{eqnarray} W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\ -W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\ -W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition} +W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\ +W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition} \end{eqnarray} \end_inset @@ -629,7 +656,7 @@ CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS \begin_inset Formula \begin{equation} -\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums} +\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums} \end{equation} \end_inset