Infinite lattices WIP
Former-commit-id: 39facbe563492f4fce54104fd4cf16d9cf1b951b
This commit is contained in:
parent
068e491662
commit
d5b6f8f5d4
|
@ -320,6 +320,33 @@ noprefix "false"
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As in the case of a finite system, eq.
|
||||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be used to calculate electromagnetic response of the structure to external
|
||||
quasiperiodic driving field – most notably a plane wave.
|
||||
However, if one sets the right the right-hand side to zero, it can also
|
||||
be used to find electromagnetic lattice modes
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Computing the Fourier sum of the translation operator
|
||||
\begin_inset CommandInset label
|
||||
|
@ -590,8 +617,8 @@ reference "eq:W sum in reciprocal space"
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -629,7 +656,7 @@ CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue