gaunt.c se zkompiluje

Former-commit-id: cf9a8e0aef20947f0b9e66c5e7b40f822cfa2a93
This commit is contained in:
Marek Nečada 2017-03-28 15:52:49 +03:00
parent 70dcb594c2
commit d5bca9f10d
1 changed files with 122 additions and 54 deletions

View File

@ -80,6 +80,7 @@ double f_a2norm(int m, int n, int mu, int nu) {
// just for convenience square of ints
static inline int isq(int x) {return x * x;}
static inline double fsq(float x) {return x * x;}
double f_alpha(int n, int nu, int p) {
return (isq(p) - isq(n-nu))*(isq(p)-isq(n+nu+1)) / (double)(4*isq(p)-1);
@ -121,6 +122,31 @@ double f_aqmax(int m, int n, int mu, int nu, int qmax) {
assert(0);
}
// starting value of coefficient a(m,n,mu,nu,qmax-1) for the forward recursion
double f_aqmax_1(int m, int n, int mu, int nu, int qmax) {
int pmin=n+nu-2*qmax;
//pmin_i=INT(pmin,lo)
//qmaxr=REAL(qmax,dbl)
int Apmin2=f_Ap(m,n,mu,nu,pmin+2);
if (pmin==(m+mu+1)) { // pmin_if
double logw=lpoch(qmax+1,qmax)+lnf(n+nu-qmax)+lnf(n+m)+lnf(nu+mu)
-lnf(n+nu+pmin)-lnf(n-qmax+1)-lnf(nu-qmax+1)-lnf(n-m)-lnf(nu-mu);
double f1=min1pow(m+n-qmax)*Apmin2*(2.*pmin+3.)*(2.*pmin+5.) /(pmin*(n+nu+pmin+3.));
double f2=(n-qmax)*(nu-qmax)*(2.*qmax+1.)/((pmin+m+mu+1.)*(pmin+m+mu+2.)*(2*qmax-1.));
return f1*f2*exp(logw);
} else if (pmin==(-m-mu+1)) {
double logw=lpoch(qmax+1.,qmax+1.)+lnf(n+nu-qmax)+lnf(pmin-m-mu)
-lnf(n+nu+pmin)-lnf(n-qmax+1.)-lnf(nu-qmax+1.);
double f1=min1pow(nu+mu-qmax)*Apmin2*(2.*pmin+3.)*(2.*pmin+5.)
/(6.*pmin*(n+nu+pmin+3.));
double f2=(n-qmax)*(nu-qmax)/(2.*qmax-1.);
return f1*f2*exp(logw);
} // END IF pmin_if
assert(0);
}//END FUNCTION f_aqmax_1
// coeff a(m,n,mu,nu,2) normalizzato per la backward recursion calcolato questa volta per ricorsione
// (from vec_trans.f90)
double f_a2normr(int m, int n, int mu, int nu, double a1norm) {
@ -177,9 +203,56 @@ int nw(int j1, int j2, int m1, int m2) {
return j1+j2+1-MAX(abs(j1-j2),abs(m1+m2));
}
double wdown(int j1, int j2, int m1, int m2) {
double logw = .5*(lnf(2.*j1,
TODO TODO TODO ZDE JSEM SKONČIL
// per calcolare il primo termine della backward recursion; vec_trans.f90
double wdown0(int j1, int j2, int m1, int m2) {
double logw=.5*(lnf(2.*j1)+lnf(2.*j2)+lnf(j1+j2-m1-m2)+lnf(j1+j2+m1+m2) - \
lnf(2.*j1+2.*j2+1.)-lnf(j1-m1)-lnf(j1+m1)-lnf(j2-m2)-lnf(j2+m2));
return min1pow(j1+j2+m1+m2)*exp(logw);
}
// per calcolar il primo termine della upward recursion; vec_trans.f90
double wup0(int j1, int j2, int m1, int m2) {
double logw;
if ( ((j1-j2)>=0) && ( abs(j1-j2)>=abs(m1+m2)) ) {
logw=0.5 * ( lnf(j1-m1)+lnf(j1+m1)+lnf(2.*j1-2.*j2)+lnf(2.*j2) - \
lnf(j2-m2)-lnf(j2+m2)-lnf(j1-j2-m1-m2)-lnf(j1-j2+m1+m2)-lnf(2.*j1+1.) );
return min1pow(j1+m1)*exp(logw);
} else if ( ((j1-j2)<0) && ( abs(j1-j2)>=abs(m1+m2)) ) {
logw=0.5 * ( lnf(j2-m2)+lnf(j2+m2)+lnf(2.*j2-2.*j1)+lnf(2.*j1) - \
lnf(j1-m1)-lnf(j1+m1)-lnf(j2-j1-m1-m2)-lnf(j2-j1+m1+m2)-lnf(2.*j2+1.) );
return min1pow(j2+m2)*exp(logw);
} else if ( ((m1+m2)>0) && (abs(j1-j2)<abs(m1+m2)) ) {
logw=0.5 * ( lnf(j1+m1)+lnf(j2+m2)+lnf(j1+j2-m1-m2)+lnf(2.*m1+2.*m2) - \
lnf(j1-m1)-lnf(j2-m2)-lnf(j1-j2+m1+m2)-lnf(j2-j1+m1+m2)-lnf(j1+j2+m1+m2+1.) );
return min1pow(j2+m2)*exp(logw);
} else if ( ((m1+m2)<0) && (abs(j1-j2)<abs(m1+m2)) ) {
logw=0.5 * ( lnf(j1-m1)+lnf(j2-m2)+lnf(j1+j2+m1+m2)+lnf(-2.*m1-2.*m2) - \
lnf(j1+m1)-lnf(j2+m2)-lnf(j1-j2-m1-m2)-lnf(j2-j1-m1-m2)-lnf(j1+j2-m1-m2+1.) );
return min1pow(j1+m1)*exp(logw);
}
assert(0);
}
// coefficiente per il calcolo ricorsivo
double cr(double j1, double j2, double j3, double m1, double m2, double m3) {
return (fsq(j3)-fsq(j1-j2))*( fsq(j1+j2+1)-fsq(j3) )*( fsq(j3)-fsq(m3) );
}
// coefficiente per il calcolo ricorsivo
// (nebo raději všude doubly)?
double dr(double j1, double j2, double j3, double m1, double m2, double m3) {
return -(2*j3+1)*( j1*(j1+1)*m3-j2*(j2+1)*m3-j3*(j3+1)*(m2-m1) );
}
//******************************************************************************
//7) subroutine Wigner3jm: calcolo il vettore di simboli 3jm
@ -207,75 +280,66 @@ void wigner3jm(int j1, int j2, int m1, int m2, int j3min, int j3max, double *v_
while(j3-2>=j3min){ // down_do
//Primo coeff della ricorsione
cd1=dr(j1,j2,j3-1,m1,m2,-m1-m2)/(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2))
cd2=((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2))/(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2))
double cd1=dr(j1,j2,j3-1,m1,m2,-m1-m2)/(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2));
double cd2=((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2))/(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2));
//Ricorsione
v_w3jm[j3int-2-j3min]=-cd1*v_w3jm[j3int-1-j3min]-cd2*v_w3jm[j3int-j3min]
v_w3jm[j3-2-j3min]=-cd1*v_w3jm[j3-1-j3min]-cd2*v_w3jm[j3-j3min];
//Aggiorno gli indici
--j3;
} //END DO down_do
// Inizializzo gli indici per la upward recursion
j3int=j3min
j3=REAL(j3min,dbl)
j3=j3min;
// Calcolo del primo termine di wigner dal basso
v_w3jm[j3int-j3min]=wup0(j1,j2,m1,m2)
v_w3jm[j3-j3min]=wup0(j1,j2,m1,m2);
// Calcolo del secondo termine di wigner dal basso
// Pongo anche la condizione sul coefficienti nel caso ci sia signolarita'
cu3_if: IF (j3min==0) THEN
cu3=0
ELSE
cu3=dr(j1,j2,j3,m1,m2,-m1-m2)/(j3*cr(j1,j2,j3+1,m1,m2,-m1-m2))
END IF cu3_if
double cu3 = (j3min==0) ? 0 : (dr(j1,j2,j3,m1,m2,-m1-m2)/(j3*cr(j1,j2,j3+1,m1,m2,-m1-m2)));
w3jm_temp=-cu3*v_w3jm[j3int-j3min]
double w3jm_temp=-cu3*v_w3jm[j3-j3min];
// If legato alla monotonia della successione
up_if: IF (ABS(w3jm_temp)>ABS(v_w3jm[j3min-j3min])) THEN
if (fabs(w3jm_temp)>fabs(v_w3jm[j3min-j3min])) { //up_if
// Aggiorno gli indici e metto nell'array il secondo valore
// in questo modo sono pronto per iniziale la upward recursion
// a tre termini
j3int=j3int+1
v_w3jm[j3int-j3min]=w3jm_temp
up_do: DO
++j3;
v_w3jm[j3-j3min]=w3jm_temp;
while(1) { // up_do: DO
//Aggiorno gli indici
j3int=j3int+1
j3=REAL(j3int,dbl)
++j3;
IF (j3int-1==j3max) EXIT
if (j3-1==j3max) break;
// IF ((INT(-m1)==-1).AND.(INT(j1)==1).AND.(INT(m2)==1).AND.(INT(j2)==2)) THEN
// WRITE(*,*) "j3-1,cr1,cr2",j3-1,cr(j1,j2,j3,m1,m2,-m1-m2),cr(j1,j2,j3,m1,m2,-m1-m2)
// END IF
//Primo e secondo coeff della ricorsione
cu1=dr(j1,j2,j3-1,m1,m2,-m1-m2)/((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2))
cu2=(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2))/((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2))
double cu1=dr(j1,j2,j3-1,m1,m2,-m1-m2)/((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2));
double cu2=(j3*cr(j1,j2,j3-1,m1,m2,-m1-m2))/((j3-1)*cr(j1,j2,j3,m1,m2,-m1-m2));
//Assegnazione temporanea della ricorsione
w3jm_temp=-cu1*v_w3jm[j3int-1-j3min]-cu2*v_w3jm[j3int-2-j3min]
double w3jm_temp=-cu1*v_w3jm[j3-1-j3min]-cu2*v_w3jm[j3-2-j3min];
IF ((ABS(w3jm_temp)<ABS(v_w3jm[j3int-1-j3min])) .OR. ((j3int-1)==j3max) ) EXIT // Cond. di uscita
v_w3jm[j3int-j3min]=w3jm_temp //Assegno perche' e' ok
END DO up_do
END IF up_if
if ((fabs(w3jm_temp)<fabs(v_w3jm[j3-1-j3min])) || ((j3-1)==j3max) ) break; // Cond. di uscita
v_w3jm[j3-j3min]=w3jm_temp; //Assegno perche' e' ok
} // END DO up_do
} //END IF up_if
} // big_if
} // END SUBROUTINE wigner3jm
END SUBROUTINE wigner3jm
void gaunt_cz(int m, int n, int mu, int n, int qmaxa, double *v_aq, int *error) {
*error = 0;
// calcolo una serie di coefficienti di Gaunt per una data quadrupletta di indici; vec_trans.f90
void gaunt_cz(int m, int n, int mu, int nu, int qmaxa, double *v_aq, int *error) {
// TODO zrušit error a dát místo něj
if (error) *error = 0;
if (abs(m) > n || abs(mu) > nu) { // error_if
*error=1;
if (error) *error=1;
assert(0);
return;
}
@ -285,31 +349,35 @@ void gaunt_cz(int m, int n, int mu, int n, int qmaxa, double *v_aq, int *error)
int pmax = n+nu;
int pmin0 = j3minimum(n,nu,0,0);
// Alloco i vettori di wigner e li calcolo
ALLOCATE(v_w3jm(pmin:pmax),v_w3jm0(pmin0:pmax),STAT=stat_a)
CALL wigner3jm(n,nu,m,mu,pmin,pmax,v_w3jm)
CALL wigner3jm(n,nu,0.0D0,0.0D0,pmin0,pmax,v_w3jm0)
double *v_w3jm = calloc(pmax-pmin+1, sizeof(double));
double *v_w3jm0 = calloc(pmax-pmin+1, sizeof(double));
assert(v_w3jm);
assert(v_w3jm0);
//ALLOCATE(v_w3jm(pmin:pmax),v_w3jm0(pmin0:pmax),STAT=stat_a)
wigner3jm(n,nu,m,mu,pmin,pmax,v_w3jm); // FIXME error handling, non-void return values
wigner3jm(n,nu,0,0,pmin0,pmax,v_w3jm0);
// Entro nel ciclo per il calcolo dei coefficienti di gaunt
gaunt_do: DO q=0,qmaxa
for (int q = 0; q <= qmaxa; ++q) { //gaunt_do: DO q=0,qmaxa
// Calcolo dell'indice p, sia reale che intero
p=INT(n+nu,lo)-2*q
pr=REAL(p,dbl)
int p=(n+nu)-2*q;
//pr=REAL(p,dbl) // use only integer p
//Calcolo del fattoriale
logw = 0.5D0* (lnf(n+m,r)+lnf(nu+mu,r)+lnf(pr-m-mu,r) - &
lnf(n-m,r)-lnf(nu-mu,r)-lnf(pr+m+mu,r))
fac= EXP(logw)
double logw = .5 * (lnf(n+m)+lnf(nu+mu)+lnf(p-m-mu) - \
lnf(n-m)-lnf(nu-mu)-lnf(p+m+mu));
double fac = exp(logw);
// Calcolo del coefficiente di gaunt
v_aq(q)=((-1.0D0)**INT(m+mu,lo))*(2.0D0*pr+1.0D0)*fac*v_w3jm(p)*v_w3jm0(p)
v_aq[q]=min1pow(m+mu)*(2*p+1)*fac*v_w3jm[p]*v_w3jm0[p];
END DO gaunt_do
} // END DO gaunt_do
// Disalloco i vettori di wigner a lavoro finito
DEALLOCATE(v_w3jm,v_w3jm0)
END SUBROUTINE gaunt_cz
free(v_w3jm);
free(v_w3jm0);
} // END SUBROUTINE gaunt_cz
// gaunt_xu from vec_trans.f90
@ -939,7 +1007,7 @@ void gaunt_xu(int m, int n, int mu, int nu, int qmax, double *v_aq, int *error)
int Ap4=f_Ap(m,n,mu,nu,p+4);
double c0=(p+2)*(p+3)*(p1+1)*(p1+2)*Ap4*alphap1;
double c1=Ap2*Ap3*Ap4+(p+1)*(p+3)*(p1+2)*(p2+2)*Ap4*alphap2+
&(p+2)*(p+4)*(p1+3)*(p2+3)*Ap2*alphap3;
(p+2)*(p+4)*(p1+3)*(p2+3)*Ap2*alphap3;
double c2=-(p+2)*(p+3)*(p2+3)*(p2+4)*Ap2*alphap4;
aq_fwd=(c0/c2)*v_aq[qi+2]-(c1/c2)*v_aq[qi+1]; //E' qui che lo calcolo
@ -954,7 +1022,7 @@ void gaunt_xu(int m, int n, int mu, int nu, int qmax, double *v_aq, int *error)
res=fabs(aq_fwd-v_aq[qi])/fabs(aq_fwd);
break;
default:
assert(0):
assert(0);
}
} // Ap4_q2_if