From d640176d621a4d2f4c84d2985965c4ed3ca07e75 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 29 Mar 2022 14:32:06 +0300 Subject: [PATCH] Expressing VSWF in terms of SSWF --- notes/VSWF_from_SSWF.md | 33 +++++++++++++++++++++++++++++++++ notes/mathjax_newcommands.js | 11 +++++++++-- 2 files changed, 42 insertions(+), 2 deletions(-) create mode 100644 notes/VSWF_from_SSWF.md diff --git a/notes/VSWF_from_SSWF.md b/notes/VSWF_from_SSWF.md new file mode 100644 index 0000000..e3b5e1a --- /dev/null +++ b/notes/VSWF_from_SSWF.md @@ -0,0 +1,33 @@ +VSWF expansions in terms of SSWF +================================ + +From +\cite necada_multiple-scattering_2021, eq. (2.19) +\f[ + \wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) = + \sum_{\tau'l'm'} \tropSr{\kappa(\vect r_2 - \vect r_1)}_{\tau l m;\tau'l'm} \wfkcreg_{\tau'l'm'}(\vect r -\vect r_2), + \qquad |\vect r -\vect r_2| < |\vect r_1 - \vect r_2|, +\f] +setting \f$ \vect r = \vect r_2\f$ and considering that + \f$ \wfkcreg_{\tau'l'm'}(\vect 0) \ne \vect 0 \f$ only for electric dipole waves (\f$ \tau = \mathrm{E}, l=1 \f$), + we have +\f[ + \wfkcout_{\tau lm}\left(\kappa (\vect r - \vect r_1) \right) = + \sum_{m'} \tropSr{\kappa(\vect r - \vect r_1)}_{\tau l m;\mathrm{E}1m} \wfkcreg_{\mathrm{E}1m'}(\vect 0), + \qquad \vect r \ne \vect r_1 . +\f] +Combining this with +\cite necada_multiple-scattering_2021, eq. (2.25) +\f[ + \tropSr{\vect d}_{\tau l m; \tau' l' m'} = \sum_{\lambda =|l-l'|+|\tau-\tau'|}^{l+l'} + C^{\lambda}_{\tau l m;\tau' l'm'} \underbrace{ \spharm{\lambda}{m-m'}(\uvec d) h_\lambda^{(1)}(d)}_{\sswfout_\lambda^{m-m'}(\vect d)}, +\f] +we get +\f[ + \wfkcout_{\tau lm}(\vect d) = \sum_{m'=-1}^1 \wfkcreg_{\mathrm{E}1m'}(\vect 0) + \sum_{\lambda=l-1+|\tau-\tau'|}^{l+1} + C^\lambda_{\tau l m;\mathrm{E}1m'} \sswfout_\lambda^{m-m'}(\vect d). +\f] +Note that the VSWF components in this expression are given in global "cartesian" basis, +*not* the local orthonormal basis derived from spherical coordinates. +(This is mostly desirable, because in lattices we need to work with flat coordinates anyway.) diff --git a/notes/mathjax_newcommands.js b/notes/mathjax_newcommands.js index 06e0a81..f0a07b9 100644 --- a/notes/mathjax_newcommands.js +++ b/notes/mathjax_newcommands.js @@ -31,8 +31,15 @@ MathJax.Hub.Config({ spharm: ["{{Y_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Spherical harmonics spharmR: ["{{Y_{\\mathrm{#1}}}_{\\mathrm{#1}{#2}{#3}}", 4, ""], // Spherical harmonics csphase: "\\mathsf{C_{CS}}", // Condon-Shortley phase - tropSrr: ["{{S^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular - tropRrr: ["{{R^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular + tropS: "{\\mathcal{S}}", // Translation operator singular + tropR: "{\\mathcal{R}}", // Translation operator regular + tropSr: ["{{\\mathcal{S}^\\mathrm{#1}}\\pr{{#2}}}", 2, ""], // Translation operator singular + tropRr: ["{{\\mathcal{R}^\\mathrm{#1}}\\pr{{#2}}}", 2, ""], // Translation operator regular + tropSrr: ["{{\\mathcal{S}^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular + tropRrr: ["{{\\mathcal{R}^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular + sswfout: "{\\psi}", // outgoing SSWF + sswfreg: "{\\phi}", // regular SSWF + // Kristensson's VSWFs, complex version (2014 notes) wfkc: "{\\vect{y}}", // any wave