Improving the text on symmetries, WIP figs
Former-commit-id: 49e6eabb7188f98308c1b6d1661dbd0b89a79a71
This commit is contained in:
parent
9bd876c273
commit
d8d0efc1b3
File diff suppressed because it is too large
Load Diff
Before Width: | Height: | Size: 124 KiB After Width: | Height: | Size: 238 KiB |
|
@ -306,8 +306,8 @@ outgoing
|
|||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\vswfrtlm1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -315,8 +315,8 @@ outgoing
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
\vswfouttlm1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||
\end{align}
|
||||
|
||||
|
@ -387,9 +387,9 @@ vector spherical harmonics
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
||||
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
||||
\vsh1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
|
||||
\vsh2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
|
||||
\vsh3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -408,7 +408,7 @@ electric dipolar
|
|||
\end_inset
|
||||
|
||||
waves
|
||||
\begin_inset Formula $\vswfrtlm 21m$
|
||||
\begin_inset Formula $\vswfrtlm21m$
|
||||
\end_inset
|
||||
|
||||
, they vanish.
|
||||
|
@ -605,7 +605,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
inside a ball
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
||||
\end_inset
|
||||
|
||||
with radius
|
||||
|
@ -615,7 +615,7 @@ noprefix "false"
|
|||
and center in the origin, were it filled with homogeneous isotropic medium;
|
||||
however, if the equation is not guaranteed to hold inside a smaller ball
|
||||
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
||||
\end_inset
|
||||
|
||||
around the origin (typically due to presence of a scatterer), one has to
|
||||
|
@ -624,7 +624,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -1541,6 +1541,34 @@ where
|
|||
|
||||
matrices as the off-diagonal blocks, whereas the diagonal blocks are set
|
||||
to zeros.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We note that eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
with zero right-hand side describes the normal modes of the system; the
|
||||
methods mentioned later in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "sec:Infinite"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
for solving the band structure of a periodic system can be used as well
|
||||
for finding the resonant frequencies of a finite system.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -92,9 +92,8 @@ name "sec:Symmetries"
|
|||
|
||||
\begin_layout Standard
|
||||
If the system has nontrivial point group symmetries, group theory gives
|
||||
additional understanding of the system properties, and can be used to reduce
|
||||
the computational costs.
|
||||
|
||||
additional understanding of the system properties, and can be used to substanti
|
||||
ally reduce the computational costs.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -175,8 +174,21 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
matrix, not the linear algebra.
|
||||
However, the lattice modes can be searched for in each irrep separately,
|
||||
and the irrep dimension gives a priori information about mode degeneracy.
|
||||
However, decomposition of the lattice mode problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
into the irreducible representations of the corresponding little co-groups
|
||||
of the system's space group is nevertheless a useful tool in the mode analysis:
|
||||
among other things, it enables separation of the lattice modes (which can
|
||||
then be searched for each irrep separately), and the irrep dimension gives
|
||||
a priori information about mode degeneracy.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -193,8 +205,8 @@ TODO Zkontrolovat všechny vzorečky zde!!!
|
|||
|
||||
\end_inset
|
||||
|
||||
In order to use the point group symmetries, we first need to know how they
|
||||
affect our basis functions, i.e.
|
||||
In order to make use of the point group symmetries, we first need to know
|
||||
how they affect our basis functions, i.e.
|
||||
the VSWFs.
|
||||
\end_layout
|
||||
|
||||
|
@ -1170,8 +1182,7 @@ Periodic systems
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For periodic systems, we can in similar manner also block-diagonalise the
|
||||
|
||||
Also for periodic systems,
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1196,7 +1207,7 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
can be block-diagonalised in a similar manner.
|
||||
Hovewer, in this case,
|
||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
@ -1218,25 +1229,29 @@ s happens unless
|
|||
|
||||
lies somewhere in the high-symmetry parts of the Brillouin zone.
|
||||
However, the high-symmetry points are usually the ones of the highest physical
|
||||
interest, for it is where the band edges
|
||||
interest, for it is where the band edges are typically located.
|
||||
The subsection does not aim for an exhaustive treatment of the topic of
|
||||
space groups in physics (which can be found elsewhere
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "dresselhaus_group_2008,bradley_mathematical_1972"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
), here we rather demonstrate how the group action matrices are generated
|
||||
on a specific example of a symmorphic space group.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
or
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
dirac points
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
|
||||
better formulation
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
are typically located.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -1468,6 +1483,36 @@ because in this case, the Bloch condition gives
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Having the group action matrices, we can construct the projectors and decompose
|
||||
the system into irreducible representations of the corresponding point
|
||||
groups analogously to the finite case
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:SAB unitary transformation operator"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This procedure can be repeated for any system with a symmorphic space group
|
||||
symmetry, where the translation and point group operations are essentially
|
||||
separable.
|
||||
For systems with non-symmorphic space group symmetries (i.e.
|
||||
those with glide reflection planes or screw rotation axes) a more refined
|
||||
approach is required
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "bradley_mathematical_1972,dresselhaus_group_2008"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
|
@ -1537,20 +1582,6 @@ name "Phase factor illustration"
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
More rigorous analysis can be found e.g.
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "chapters 10–11"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
|
Loading…
Reference in New Issue