diff --git a/lepaper/finite.lyx b/lepaper/finite.lyx index 97c63f1..46c809f 100644 --- a/lepaper/finite.lyx +++ b/lepaper/finite.lyx @@ -864,8 +864,8 @@ In many scattering problems considered in practice, the driving field is with expansion coefficients \begin_inset Formula \begin{eqnarray} -\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD1lm\left(\uvec k\right),\nonumber \\ -\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD2lm\left(\uvec k\right).\label{eq:plane wave expansion} +\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\ +\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion} \end{eqnarray} \end_inset @@ -1281,7 +1281,7 @@ but this form is less suitable for numerical calculations due to the fact \begin_inset Formula $l$ \end_inset -, and the truncation is not justified in this case. +, hence the truncation is not justified in this case. \begin_inset Note Note status open @@ -1537,9 +1537,9 @@ outside. In our convention, the regular translation operator can be expressed explicitly as \begin_inset Formula -\begin{equation} -\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator} -\end{equation} +\begin{multline} +\tropr_{\tau lm;\tau l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator} +\end{multline} \end_inset