reorganisation of the code
Former-commit-id: 2efe6a07fa27aa2a159dfa83959e9580b3f53809
This commit is contained in:
parent
b51b1dc2b5
commit
de45a9e38c
|
@ -1,9 +1,9 @@
|
|||
#include <assert.h>
|
||||
#include "translations.h"
|
||||
#include "qpms_specfunc.h"
|
||||
#include <stdlib.h>
|
||||
#include <gsl/gsl_sf_bessel.h>
|
||||
|
||||
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array) {
|
||||
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
|
||||
int retval;
|
||||
double tmparr[lmax+1];
|
||||
switch(typ) {
|
||||
|
|
|
@ -0,0 +1,158 @@
|
|||
#include "qpms_specfunc.h"
|
||||
#include "qpms_types.h"
|
||||
#include <gsl/gsl_sf_legendre.h>
|
||||
#include <gsl/gsl_math.h>
|
||||
#include <stdlib.h>
|
||||
#include "indexing.h"
|
||||
#include <string.h>
|
||||
|
||||
// Legendre functions also for negative m, see DLMF 14.9.3
|
||||
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
|
||||
gsl_sf_legendre_t lnorm, double csphase)
|
||||
{
|
||||
size_t n = gsl_sf_legendre_array_n(lMax);
|
||||
double *legendre_tmp = malloc(n * sizeof(double));
|
||||
double *legendre_deriv_tmp = malloc(n * sizeof(double));
|
||||
int gsl_errno = gsl_sf_legendre_deriv_array_e(
|
||||
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 0; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
target[y] = legendre_tmp[i];
|
||||
target_deriv[y] = legendre_deriv_tmp[i];
|
||||
}
|
||||
switch(lnorm) {
|
||||
case GSL_SF_LEGENDRE_NONE:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1);
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
case GSL_SF_LEGENDRE_SCHMIDT:
|
||||
case GSL_SF_LEGENDRE_SPHARM:
|
||||
case GSL_SF_LEGENDRE_FULL:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort(); //NI
|
||||
break;
|
||||
}
|
||||
free(legendre_tmp);
|
||||
free(legendre_deriv_tmp);
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
|
||||
double csphase)
|
||||
{
|
||||
|
||||
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
|
||||
}
|
||||
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm)
|
||||
{
|
||||
const double csphase = qpms_normalisation_t_csphase(norm);
|
||||
norm = qpms_normalisation_t_normonly(norm);
|
||||
qpms_pitau_t res;
|
||||
qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
res.pi = malloc(nelem * sizeof(double));
|
||||
res.tau = malloc(nelem * sizeof(double));
|
||||
double ct = cos(theta), st = sin(theta);
|
||||
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
|
||||
memset(res.pi, 0, nelem*sizeof(double));
|
||||
memset(res.tau, 0, nelem*sizeof(double));
|
||||
res.leg = calloc(nelem, sizeof(double));
|
||||
switch(norm) {
|
||||
case QPMS_NORMALISATION_XU:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.;
|
||||
double p = l*(l+1)/2;
|
||||
const double n = 0.5;
|
||||
int lpar = (l%2)?-1:1;
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
|
||||
}
|
||||
break;
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
|
||||
int lpar = (l%2)?-1:1;
|
||||
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
}
|
||||
break;
|
||||
case QPMS_NORMALISATION_POWER:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
|
||||
int lpar = (l%2)?-1:1;
|
||||
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
else { // cos(theta) in (-1,1), use normal calculation
|
||||
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
|
||||
norm == QPMS_NORMALISATION_XU ? GSL_SF_LEGENDRE_NONE
|
||||
: GSL_SF_LEGENDRE_SPHARM, csphase))
|
||||
abort();
|
||||
if (norm == QPMS_NORMALISATION_POWER)
|
||||
/* for Xu (=non-normalized) and Taylor (=sph. harm. normalized)
|
||||
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e().
|
||||
* However, Kristensson ("power") normalisation differs from Taylor
|
||||
* by 1/sqrt(l*(l+1)) factor.
|
||||
*/
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
double prefac = 1./sqrt(l*(l+1));
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
res.leg[qpms_mn2y(m,l)] *= prefac;
|
||||
legder[qpms_mn2y(m,l)] *= prefac;
|
||||
}
|
||||
}
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];
|
||||
res.tau[qpms_mn2y(m,l)] = - st * legder[qpms_mn2y(m,l)];
|
||||
}
|
||||
}
|
||||
free(legder);
|
||||
}
|
||||
res.lMax = lMax;
|
||||
return res;
|
||||
}
|
||||
|
||||
void qpms_pitau_free(qpms_pitau_t x) {
|
||||
free(x.leg);
|
||||
free(x.pi);
|
||||
free(x.tau);
|
||||
}
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
#ifndef QPMS_SPECFUNC_H
|
||||
#define QPMS_SPECFUNC_H
|
||||
#include "qpms_types.h"
|
||||
#include <gsl/gsl_sf_legendre.h>
|
||||
|
||||
/******************************************************************************
|
||||
* Spherical Bessel functions *
|
||||
******************************************************************************/
|
||||
|
||||
// TODO unify types
|
||||
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array);
|
||||
|
||||
|
||||
/******************************************************************************
|
||||
* Legendre functions and their "angular derivatives" *
|
||||
******************************************************************************/
|
||||
|
||||
/*
|
||||
* N.B. for the norm definitions, see
|
||||
* https://www.gnu.org/software/gsl/manual/html_node/Associated-Legendre-Polynomials-and-Spherical-Harmonics.html
|
||||
* ( gsl/specfunc/legendre_source.c and 7.24.2 of gsl docs
|
||||
*/
|
||||
|
||||
qpms_errno_t qpms_legendre_deriv_y_get(double **result, double **result_deriv, double x, qpms_l_t lMax,
|
||||
gsl_sf_legendre_t lnorm, double csphase); // free() result and result_deriv yourself!
|
||||
qpms_errno_t qpms_legendre_deriv_y_fill(double *where, double *where_deriv, double x,
|
||||
qpms_l_t lMax, gsl_sf_legendre_t lnorm, double csphase);
|
||||
|
||||
|
||||
double *qpms_legendre_y_get(double x, qpms_l_t lMax, qpms_normalisation_t norm);//NI
|
||||
double *qpms_legendre0d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
double *qpms_legendre_plus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
|
||||
|
||||
|
||||
// array of Legendre and pi, tau auxillary functions (see [1,(37)])
|
||||
// This should handle correct evaluation for theta -> 0 and theta -> pi
|
||||
typedef struct {
|
||||
//qpms_normalisation_t norm;
|
||||
qpms_l_t lMax;
|
||||
//qpms_y_t nelem;
|
||||
double *leg, *pi, *tau;
|
||||
} qpms_pitau_t;
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
|
||||
void qpms_pitau_free(qpms_pitau_t);//NI
|
||||
void qpms_pitau_pfree(qpms_pitau_t*);//NI
|
||||
|
||||
// Associated Legendre polynomial at zero argument (DLMF 14.5.1) DEPRECATED?
|
||||
double qpms_legendre0(int m, int n);
|
||||
// Associated Legendre polynomial derivative at zero argument (DLMF 14.5.2)
|
||||
double qpms_legendred0(int m, int n);
|
||||
|
||||
#endif // QPMS_SPECFUNC_H
|
|
@ -57,7 +57,9 @@ static inline int qpms_normalisation_t_normonly(qpms_normalisation_t norm) {
|
|||
}
|
||||
|
||||
|
||||
// TODO move elsewhere
|
||||
// TODO move the inlines elsewhere
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
// relative to QPMS_NORMALISATION_KRISTENSSON_CS, i.e.
|
||||
// P_l^m[normtype] = P_l^m[Kristensson]
|
||||
static inline double qpms_normalisation_t_factor(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {
|
||||
|
|
|
@ -5,65 +5,71 @@
|
|||
#include <complex.h>
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
// Associated Legendre polynomial at zero argument (DLMF 14.5.1)
|
||||
double qpms_legendre0(int m, int n);
|
||||
// Associated Legendre polynomial derivative at zero argument (DLMF 14.5.2)
|
||||
double qpms_legendred0(int m, int n);
|
||||
// TODO unify types
|
||||
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array);
|
||||
|
||||
// TODO replace the xplicit "Taylor" functions with general,
|
||||
// taking qpms_bessel_t argument.
|
||||
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||
complex double qpms_trans_single_A_Taylor(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
|
||||
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||||
complex double qpms_trans_single_B_Taylor(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
|
||||
complex double qpms_trans_single_A_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r,
|
||||
complex double qpms_trans_single_A_Taylor_ext(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, double kdlj_r,
|
||||
double kdlj_th, double kdlj_phi, int r_ge_d, int J);
|
||||
|
||||
complex double qpms_trans_single_B_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r,
|
||||
complex double qpms_trans_single_B_Taylor_ext(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, double kdlj_r,
|
||||
double kdlj_th, double kdlj_phi, int r_ge_d, int J);
|
||||
|
||||
typedef struct qpms_trans_calculator {
|
||||
int lMax;
|
||||
size_t nelem;
|
||||
qpms_normalisation_t normalisation;
|
||||
qpms_l_t lMax;
|
||||
qpms_y_t nelem;
|
||||
complex double **A_multipliers;
|
||||
complex double **B_multipliers;
|
||||
qpms_normalisation_t normalisation;
|
||||
#if 0
|
||||
// Normalised values of the Legendre functions and derivatives
|
||||
// for θ == π/2, i.e. for the 2D case.
|
||||
double *leg0;
|
||||
double *pi0;
|
||||
double *tau0;
|
||||
// Spherical Bessel function coefficients:
|
||||
// TODO
|
||||
#endif
|
||||
} qpms_trans_calculator;
|
||||
|
||||
qpms_trans_calculator *qpms_trans_calculator_init(int lMax, qpms_normalisation_t nt);
|
||||
qpms_trans_calculator *qpms_trans_calculator_init(qpms_l_t lMax, qpms_normalisation_t nt);
|
||||
void qpms_trans_calculator_free(qpms_trans_calculator *);
|
||||
|
||||
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, sph_t kdlj,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, sph_t kdlj,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t kdlj, bool r_ge_d, qpms_bessel_t J);
|
||||
|
||||
|
||||
// TODO update the types later
|
||||
complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, double kdlj_r,
|
||||
double kdlj_th, double kdlj_phi, int r_ge_d, int J);
|
||||
|
||||
complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c,
|
||||
int m, int n, int mu, int nu, double kdlj_r,
|
||||
double kdlj_th, double kdlj_phi, int r_ge_d, int J);
|
||||
|
||||
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
int m, int n, int mu, int nu, sph_t kdlj,
|
||||
bool r_ge_d, qpms_bessel_t J);
|
||||
int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
int m, int n, int mu, int nu, double kdlj_r,
|
||||
double kdlj_th, double kdlj_phi, int r_ge_d, int J);
|
||||
|
||||
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
sph_t kdlj, bool r_ge_d, qpms_bessel_t J);
|
||||
int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c,
|
||||
complex double *Adest, complex double *Bdest,
|
||||
size_t deststride, size_t srcstride,
|
||||
|
|
154
qpms/vswf.c
154
qpms/vswf.c
|
@ -4,162 +4,10 @@
|
|||
#include "vswf.h"
|
||||
#include "indexing.h"
|
||||
#include "translations.h" // TODO move qpms_sph_bessel_fill elsewhere
|
||||
#include <gsl/gsl_sf_legendre.h>
|
||||
#include "qpms_specfunc.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// Legendre functions also for negative m, see DLMF 14.9.3
|
||||
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
|
||||
gsl_sf_legendre_t lnorm, double csphase)
|
||||
{
|
||||
size_t n = gsl_sf_legendre_array_n(lMax);
|
||||
double *legendre_tmp = malloc(n * sizeof(double));
|
||||
double *legendre_deriv_tmp = malloc(n * sizeof(double));
|
||||
int gsl_errno = gsl_sf_legendre_deriv_array_e(
|
||||
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 0; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
target[y] = legendre_tmp[i];
|
||||
target_deriv[y] = legendre_deriv_tmp[i];
|
||||
}
|
||||
switch(lnorm) {
|
||||
case GSL_SF_LEGENDRE_NONE:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1);
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
case GSL_SF_LEGENDRE_SCHMIDT:
|
||||
case GSL_SF_LEGENDRE_SPHARM:
|
||||
case GSL_SF_LEGENDRE_FULL:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l)
|
||||
for (qpms_m_t m = 1; m <= l; ++m) {
|
||||
qpms_y_t y = qpms_mn2y(-m,l);
|
||||
size_t i = gsl_sf_legendre_array_index(l,m);
|
||||
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
|
||||
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
|
||||
target[y] = factor * legendre_tmp[i];
|
||||
target_deriv[y] = factor * legendre_deriv_tmp[i];
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort(); //NI
|
||||
break;
|
||||
}
|
||||
free(legendre_tmp);
|
||||
free(legendre_deriv_tmp);
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
|
||||
double csphase)
|
||||
{
|
||||
|
||||
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
|
||||
}
|
||||
|
||||
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm)
|
||||
{
|
||||
const double csphase = qpms_normalisation_t_csphase(norm);
|
||||
norm = qpms_normalisation_t_normonly(norm);
|
||||
qpms_pitau_t res;
|
||||
qpms_y_t nelem = qpms_lMax2nelem(lMax);
|
||||
res.pi = malloc(nelem * sizeof(double));
|
||||
res.tau = malloc(nelem * sizeof(double));
|
||||
double ct = cos(theta), st = sin(theta);
|
||||
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
|
||||
memset(res.pi, 0, nelem*sizeof(double));
|
||||
memset(res.tau, 0, nelem*sizeof(double));
|
||||
res.leg = calloc(nelem, sizeof(double));
|
||||
switch(norm) {
|
||||
case QPMS_NORMALISATION_XU:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.;
|
||||
double p = l*(l+1)/2;
|
||||
const double n = 0.5;
|
||||
int lpar = (l%2)?-1:1;
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
|
||||
}
|
||||
break;
|
||||
case QPMS_NORMALISATION_TAYLOR:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
|
||||
int lpar = (l%2)?-1:1;
|
||||
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
}
|
||||
break;
|
||||
case QPMS_NORMALISATION_POWER:
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
|
||||
int lpar = (l%2)?-1:1;
|
||||
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
|
||||
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
|
||||
|
||||
}
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
else { // cos(theta) in (-1,1), use normal calculation
|
||||
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
|
||||
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
|
||||
norm == QPMS_NORMALISATION_XU ? GSL_SF_LEGENDRE_NONE
|
||||
: GSL_SF_LEGENDRE_SPHARM, csphase))
|
||||
abort();
|
||||
if (norm == QPMS_NORMALISATION_POWER)
|
||||
/* for Xu (=non-normalized) and Taylor (=sph. harm. normalized)
|
||||
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e().
|
||||
* However, Kristensson ("power") normalisation differs from Taylor
|
||||
* by 1/sqrt(l*(l+1)) factor.
|
||||
*/
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
double prefac = 1./sqrt(l*(l+1));
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
res.leg[qpms_mn2y(m,l)] *= prefac;
|
||||
legder[qpms_mn2y(m,l)] *= prefac;
|
||||
}
|
||||
}
|
||||
for (qpms_l_t l = 1; l <= lMax; ++l) {
|
||||
for (qpms_m_t m = -l; m <= l; ++m) {
|
||||
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];
|
||||
res.tau[qpms_mn2y(m,l)] = - st * legder[qpms_mn2y(m,l)];
|
||||
}
|
||||
}
|
||||
free(legder);
|
||||
}
|
||||
res.lMax = lMax;
|
||||
return res;
|
||||
}
|
||||
|
||||
void qpms_pitau_free(qpms_pitau_t x) {
|
||||
free(x.leg);
|
||||
free(x.pi);
|
||||
free(x.tau);
|
||||
}
|
||||
|
||||
|
||||
csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
|
||||
qpms_bessel_t btyp, qpms_normalisation_t norm) {
|
||||
lmcheck(l,m);
|
||||
|
|
19
qpms/vswf.h
19
qpms/vswf.h
|
@ -60,23 +60,4 @@ qpms_vswfset_sph_t *qpms_vswfset_make(qpms_l_t lMax, sph_t kdlj,
|
|||
qpms_bessel_t btyp, qpms_normalisation_t norm);//NI
|
||||
void qpms_vswfset_sph_pfree(qpms_vswfset_sph_t *);//NI
|
||||
|
||||
double *qpms_legendre_y_get(double x, qpms_l_t lMax, qpms_normalisation_t norm);//NI
|
||||
double *qpms_legendre0d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
double *qpms_legendre_plus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
|
||||
|
||||
|
||||
|
||||
// array of Legendre and pi, tau auxillary functions (see [1,(37)])
|
||||
// This should handle correct evaluation for theta -> 0 and theta -> pi
|
||||
typedef struct {
|
||||
//qpms_normalisation_t norm;
|
||||
qpms_l_t lMax;
|
||||
//qpms_y_t nelem;
|
||||
double *leg, *pi, *tau;
|
||||
} qpms_pitau_t;
|
||||
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
|
||||
void qpms_pitau_free(qpms_pitau_t);//NI
|
||||
void qpms_pitau_pfree(qpms_pitau_t*);//NI
|
||||
|
||||
#endif // QPMS_VSWF_H
|
||||
|
|
Loading…
Reference in New Issue