reorganisation of the code

Former-commit-id: 2efe6a07fa27aa2a159dfa83959e9580b3f53809
This commit is contained in:
Marek Nečada 2018-02-07 15:39:41 +02:00
parent b51b1dc2b5
commit de45a9e38c
7 changed files with 248 additions and 199 deletions

View File

@ -1,9 +1,9 @@
#include <assert.h> #include <assert.h>
#include "translations.h" #include "qpms_specfunc.h"
#include <stdlib.h> #include <stdlib.h>
#include <gsl/gsl_sf_bessel.h> #include <gsl/gsl_sf_bessel.h>
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array) { qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
int retval; int retval;
double tmparr[lmax+1]; double tmparr[lmax+1];
switch(typ) { switch(typ) {

158
qpms/legendre.c Normal file
View File

@ -0,0 +1,158 @@
#include "qpms_specfunc.h"
#include "qpms_types.h"
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_math.h>
#include <stdlib.h>
#include "indexing.h"
#include <string.h>
// Legendre functions also for negative m, see DLMF 14.9.3
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase)
{
size_t n = gsl_sf_legendre_array_n(lMax);
double *legendre_tmp = malloc(n * sizeof(double));
double *legendre_deriv_tmp = malloc(n * sizeof(double));
int gsl_errno = gsl_sf_legendre_deriv_array_e(
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 0; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
target[y] = legendre_tmp[i];
target_deriv[y] = legendre_deriv_tmp[i];
}
switch(lnorm) {
case GSL_SF_LEGENDRE_NONE:
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1);
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
break;
case GSL_SF_LEGENDRE_SCHMIDT:
case GSL_SF_LEGENDRE_SPHARM:
case GSL_SF_LEGENDRE_FULL:
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
break;
default:
abort(); //NI
break;
}
free(legendre_tmp);
free(legendre_deriv_tmp);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
double csphase)
{
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
}
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm)
{
const double csphase = qpms_normalisation_t_csphase(norm);
norm = qpms_normalisation_t_normonly(norm);
qpms_pitau_t res;
qpms_y_t nelem = qpms_lMax2nelem(lMax);
res.pi = malloc(nelem * sizeof(double));
res.tau = malloc(nelem * sizeof(double));
double ct = cos(theta), st = sin(theta);
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
memset(res.pi, 0, nelem*sizeof(double));
memset(res.tau, 0, nelem*sizeof(double));
res.leg = calloc(nelem, sizeof(double));
switch(norm) {
case QPMS_NORMALISATION_XU:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.;
double p = l*(l+1)/2;
const double n = 0.5;
int lpar = (l%2)?-1:1;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
}
break;
case QPMS_NORMALISATION_TAYLOR:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
int lpar = (l%2)?-1:1;
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
case QPMS_NORMALISATION_POWER:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
int lpar = (l%2)?-1:1;
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
default:
abort();
}
}
else { // cos(theta) in (-1,1), use normal calculation
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
norm == QPMS_NORMALISATION_XU ? GSL_SF_LEGENDRE_NONE
: GSL_SF_LEGENDRE_SPHARM, csphase))
abort();
if (norm == QPMS_NORMALISATION_POWER)
/* for Xu (=non-normalized) and Taylor (=sph. harm. normalized)
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e().
* However, Kristensson ("power") normalisation differs from Taylor
* by 1/sqrt(l*(l+1)) factor.
*/
for (qpms_l_t l = 1; l <= lMax; ++l) {
double prefac = 1./sqrt(l*(l+1));
for (qpms_m_t m = -l; m <= l; ++m) {
res.leg[qpms_mn2y(m,l)] *= prefac;
legder[qpms_mn2y(m,l)] *= prefac;
}
}
for (qpms_l_t l = 1; l <= lMax; ++l) {
for (qpms_m_t m = -l; m <= l; ++m) {
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];
res.tau[qpms_mn2y(m,l)] = - st * legder[qpms_mn2y(m,l)];
}
}
free(legder);
}
res.lMax = lMax;
return res;
}
void qpms_pitau_free(qpms_pitau_t x) {
free(x.leg);
free(x.pi);
free(x.tau);
}

54
qpms/qpms_specfunc.h Normal file
View File

@ -0,0 +1,54 @@
#ifndef QPMS_SPECFUNC_H
#define QPMS_SPECFUNC_H
#include "qpms_types.h"
#include <gsl/gsl_sf_legendre.h>
/******************************************************************************
* Spherical Bessel functions *
******************************************************************************/
// TODO unify types
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array);
/******************************************************************************
* Legendre functions and their "angular derivatives" *
******************************************************************************/
/*
* N.B. for the norm definitions, see
* https://www.gnu.org/software/gsl/manual/html_node/Associated-Legendre-Polynomials-and-Spherical-Harmonics.html
* ( gsl/specfunc/legendre_source.c and 7.24.2 of gsl docs
*/
qpms_errno_t qpms_legendre_deriv_y_get(double **result, double **result_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase); // free() result and result_deriv yourself!
qpms_errno_t qpms_legendre_deriv_y_fill(double *where, double *where_deriv, double x,
qpms_l_t lMax, gsl_sf_legendre_t lnorm, double csphase);
double *qpms_legendre_y_get(double x, qpms_l_t lMax, qpms_normalisation_t norm);//NI
double *qpms_legendre0d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
double *qpms_legendre_plus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
// array of Legendre and pi, tau auxillary functions (see [1,(37)])
// This should handle correct evaluation for theta -> 0 and theta -> pi
typedef struct {
//qpms_normalisation_t norm;
qpms_l_t lMax;
//qpms_y_t nelem;
double *leg, *pi, *tau;
} qpms_pitau_t;
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
void qpms_pitau_free(qpms_pitau_t);//NI
void qpms_pitau_pfree(qpms_pitau_t*);//NI
// Associated Legendre polynomial at zero argument (DLMF 14.5.1) DEPRECATED?
double qpms_legendre0(int m, int n);
// Associated Legendre polynomial derivative at zero argument (DLMF 14.5.2)
double qpms_legendred0(int m, int n);
#endif // QPMS_SPECFUNC_H

View File

@ -57,7 +57,9 @@ static inline int qpms_normalisation_t_normonly(qpms_normalisation_t norm) {
} }
// TODO move elsewhere // TODO move the inlines elsewhere
#include <math.h>
#include <assert.h>
// relative to QPMS_NORMALISATION_KRISTENSSON_CS, i.e. // relative to QPMS_NORMALISATION_KRISTENSSON_CS, i.e.
// P_l^m[normtype] = P_l^m[Kristensson] // P_l^m[normtype] = P_l^m[Kristensson]
static inline double qpms_normalisation_t_factor(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) { static inline double qpms_normalisation_t_factor(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {

View File

@ -5,65 +5,71 @@
#include <complex.h> #include <complex.h>
#include <stdbool.h> #include <stdbool.h>
#include <stddef.h> #include <stddef.h>
// Associated Legendre polynomial at zero argument (DLMF 14.5.1)
double qpms_legendre0(int m, int n);
// Associated Legendre polynomial derivative at zero argument (DLMF 14.5.2)
double qpms_legendred0(int m, int n);
// TODO unify types
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array);
// TODO replace the xplicit "Taylor" functions with general, // TODO replace the xplicit "Taylor" functions with general,
// taking qpms_bessel_t argument. // taking qpms_bessel_t argument.
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj, complex double qpms_trans_single_A_Taylor(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J); bool r_ge_d, qpms_bessel_t J);
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj, complex double qpms_trans_single_B_Taylor(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J); bool r_ge_d, qpms_bessel_t J);
complex double qpms_trans_single_A_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r, complex double qpms_trans_single_A_Taylor_ext(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, double kdlj_r,
double kdlj_th, double kdlj_phi, int r_ge_d, int J); double kdlj_th, double kdlj_phi, int r_ge_d, int J);
complex double qpms_trans_single_B_Taylor_ext(int m, int n, int mu, int nu, double kdlj_r, complex double qpms_trans_single_B_Taylor_ext(qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, double kdlj_r,
double kdlj_th, double kdlj_phi, int r_ge_d, int J); double kdlj_th, double kdlj_phi, int r_ge_d, int J);
typedef struct qpms_trans_calculator { typedef struct qpms_trans_calculator {
int lMax; qpms_normalisation_t normalisation;
size_t nelem; qpms_l_t lMax;
qpms_y_t nelem;
complex double **A_multipliers; complex double **A_multipliers;
complex double **B_multipliers; complex double **B_multipliers;
qpms_normalisation_t normalisation; #if 0
// Normalised values of the Legendre functions and derivatives
// for θ == π/2, i.e. for the 2D case.
double *leg0;
double *pi0;
double *tau0;
// Spherical Bessel function coefficients:
// TODO
#endif
} qpms_trans_calculator; } qpms_trans_calculator;
qpms_trans_calculator *qpms_trans_calculator_init(int lMax, qpms_normalisation_t nt); qpms_trans_calculator *qpms_trans_calculator_init(qpms_l_t lMax, qpms_normalisation_t nt);
void qpms_trans_calculator_free(qpms_trans_calculator *); void qpms_trans_calculator_free(qpms_trans_calculator *);
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c, complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj, qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J); bool r_ge_d, qpms_bessel_t J);
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c, complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj, qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J); bool r_ge_d, qpms_bessel_t J);
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J);
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, bool r_ge_d, qpms_bessel_t J);
// TODO update the types later
complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c, complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, double kdlj_r, int m, int n, int mu, int nu, double kdlj_r,
double kdlj_th, double kdlj_phi, int r_ge_d, int J); double kdlj_th, double kdlj_phi, int r_ge_d, int J);
complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c, complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, double kdlj_r, int m, int n, int mu, int nu, double kdlj_r,
double kdlj_th, double kdlj_phi, int r_ge_d, int J); double kdlj_th, double kdlj_phi, int r_ge_d, int J);
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J);
int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c, int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest, complex double *Adest, complex double *Bdest,
int m, int n, int mu, int nu, double kdlj_r, int m, int n, int mu, int nu, double kdlj_r,
double kdlj_th, double kdlj_phi, int r_ge_d, int J); double kdlj_th, double kdlj_phi, int r_ge_d, int J);
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride,
sph_t kdlj, bool r_ge_d, qpms_bessel_t J);
int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c, int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c,
complex double *Adest, complex double *Bdest, complex double *Adest, complex double *Bdest,
size_t deststride, size_t srcstride, size_t deststride, size_t srcstride,

View File

@ -4,162 +4,10 @@
#include "vswf.h" #include "vswf.h"
#include "indexing.h" #include "indexing.h"
#include "translations.h" // TODO move qpms_sph_bessel_fill elsewhere #include "translations.h" // TODO move qpms_sph_bessel_fill elsewhere
#include <gsl/gsl_sf_legendre.h> #include "qpms_specfunc.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
// Legendre functions also for negative m, see DLMF 14.9.3
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase)
{
size_t n = gsl_sf_legendre_array_n(lMax);
double *legendre_tmp = malloc(n * sizeof(double));
double *legendre_deriv_tmp = malloc(n * sizeof(double));
int gsl_errno = gsl_sf_legendre_deriv_array_e(
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 0; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
target[y] = legendre_tmp[i];
target_deriv[y] = legendre_deriv_tmp[i];
}
switch(lnorm) {
case GSL_SF_LEGENDRE_NONE:
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
double factor = exp(lgamma(l-m+1)-lgamma(l+m+1))*((m%2)?-1:1);
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
break;
case GSL_SF_LEGENDRE_SCHMIDT:
case GSL_SF_LEGENDRE_SPHARM:
case GSL_SF_LEGENDRE_FULL:
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// viz DLMF 14.9.3, čert ví, jak je to s cs fasí.
double factor = ((m%2)?-1:1); // this is the difference from the unnormalised case
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
break;
default:
abort(); //NI
break;
}
free(legendre_tmp);
free(legendre_deriv_tmp);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
double csphase)
{
*target = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
*dtarget = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
}
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm)
{
const double csphase = qpms_normalisation_t_csphase(norm);
norm = qpms_normalisation_t_normonly(norm);
qpms_pitau_t res;
qpms_y_t nelem = qpms_lMax2nelem(lMax);
res.pi = malloc(nelem * sizeof(double));
res.tau = malloc(nelem * sizeof(double));
double ct = cos(theta), st = sin(theta);
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
memset(res.pi, 0, nelem*sizeof(double));
memset(res.tau, 0, nelem*sizeof(double));
res.leg = calloc(nelem, sizeof(double));
switch(norm) {
case QPMS_NORMALISATION_XU:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = (l%2)?ct:1.;
double p = l*(l+1)/2;
const double n = 0.5;
int lpar = (l%2)?-1:1;
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * p * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * n * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * p * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * n * csphase;
}
break;
case QPMS_NORMALISATION_TAYLOR:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)*0.25*M_1_PI);
int lpar = (l%2)?-1:1;
double fl = 0.25 * sqrt((2*l+1)*l*(l+1)*M_1_PI);
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
case QPMS_NORMALISATION_POWER:
for (qpms_l_t l = 1; l <= lMax; ++l) {
res.leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
int lpar = (l%2)?-1:1;
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
res.pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
res.tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
break;
default:
abort();
}
}
else { // cos(theta) in (-1,1), use normal calculation
double *legder = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
res.leg = malloc(sizeof(double)*qpms_lMax2nelem(lMax));
if (qpms_legendre_deriv_y_fill(res.leg, legder, ct, lMax,
norm == QPMS_NORMALISATION_XU ? GSL_SF_LEGENDRE_NONE
: GSL_SF_LEGENDRE_SPHARM, csphase))
abort();
if (norm == QPMS_NORMALISATION_POWER)
/* for Xu (=non-normalized) and Taylor (=sph. harm. normalized)
* the correct normalisation is already obtained from gsl_sf_legendre_deriv_array_e().
* However, Kristensson ("power") normalisation differs from Taylor
* by 1/sqrt(l*(l+1)) factor.
*/
for (qpms_l_t l = 1; l <= lMax; ++l) {
double prefac = 1./sqrt(l*(l+1));
for (qpms_m_t m = -l; m <= l; ++m) {
res.leg[qpms_mn2y(m,l)] *= prefac;
legder[qpms_mn2y(m,l)] *= prefac;
}
}
for (qpms_l_t l = 1; l <= lMax; ++l) {
for (qpms_m_t m = -l; m <= l; ++m) {
res.pi [qpms_mn2y(m,l)] = m / st * res.leg[qpms_mn2y(m,l)];
res.tau[qpms_mn2y(m,l)] = - st * legder[qpms_mn2y(m,l)];
}
}
free(legder);
}
res.lMax = lMax;
return res;
}
void qpms_pitau_free(qpms_pitau_t x) {
free(x.leg);
free(x.pi);
free(x.tau);
}
csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj, csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t l, sph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm) { qpms_bessel_t btyp, qpms_normalisation_t norm) {
lmcheck(l,m); lmcheck(l,m);

View File

@ -60,23 +60,4 @@ qpms_vswfset_sph_t *qpms_vswfset_make(qpms_l_t lMax, sph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);//NI qpms_bessel_t btyp, qpms_normalisation_t norm);//NI
void qpms_vswfset_sph_pfree(qpms_vswfset_sph_t *);//NI void qpms_vswfset_sph_pfree(qpms_vswfset_sph_t *);//NI
double *qpms_legendre_y_get(double x, qpms_l_t lMax, qpms_normalisation_t norm);//NI
double *qpms_legendre0d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
double *qpms_legendre_plus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
double *qpms_legendre_minus1d_y_get(qpms_l_t lMax, qpms_normalisation_t norm); //NI
// array of Legendre and pi, tau auxillary functions (see [1,(37)])
// This should handle correct evaluation for theta -> 0 and theta -> pi
typedef struct {
//qpms_normalisation_t norm;
qpms_l_t lMax;
//qpms_y_t nelem;
double *leg, *pi, *tau;
} qpms_pitau_t;
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, qpms_normalisation_t norm);
void qpms_pitau_free(qpms_pitau_t);//NI
void qpms_pitau_pfree(qpms_pitau_t*);//NI
#endif // QPMS_VSWF_H #endif // QPMS_VSWF_H