Pseudovectorisation of plane_pq_y
Former-commit-id: 4af74647f63a2aa4c669244245dfc4b2cf7a3efd
This commit is contained in:
parent
2451da7b3e
commit
e0b1b3af55
|
@ -47,6 +47,7 @@ def ujit(f):
|
|||
# Coordinate transforms for arrays of "arbitrary" shape
|
||||
#@ujit
|
||||
def cart2sph(cart,axis=-1, allow2d=False):
|
||||
cart = np.array(cart, copy=False)
|
||||
if cart.shape[axis] == 3:
|
||||
[x, y, z] = np.split(cart,3,axis=axis)
|
||||
r = np.linalg.norm(cart,axis=axis,keepdims=True)
|
||||
|
@ -67,6 +68,7 @@ def cart2sph(cart,axis=-1, allow2d=False):
|
|||
|
||||
#@ujit
|
||||
def sph2cart(sph, axis=-1):
|
||||
sph = np.array(sph, copy=False)
|
||||
if (sph.shape[axis] != 3):
|
||||
raise ValueError("The converted array has to have dimension 3"
|
||||
" along the given axis")
|
||||
|
@ -99,6 +101,8 @@ def sph_loccart2cart(loccart, sph, axis=-1):
|
|||
output: ... TODO
|
||||
The coordinates of the vector in global cartesian coordinates
|
||||
"""
|
||||
loccart = np.array(loccart, copy=False)
|
||||
sph = np.array(sph, copy=False)
|
||||
if (loccart.shape[axis] != 3):
|
||||
raise ValueError("The converted array has to have dimension 3"
|
||||
" along the given axis")
|
||||
|
@ -462,9 +466,9 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
|
|||
----------
|
||||
nmax: int
|
||||
The order of the expansion.
|
||||
kdir_cart: (3,)-shaped real array
|
||||
kdir_cart: (...,3)-shaped real array
|
||||
The wave vector (its magnitude does not play a role).
|
||||
E_cart: (3,)-shaped complex array
|
||||
E_cart: (...,3)-shaped complex array
|
||||
Amplitude of the plane wave
|
||||
|
||||
Returns
|
||||
|
@ -476,22 +480,31 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
|
|||
if np.iscomplexobj(kdir_cart):
|
||||
warnings.warn("The direction vector for the plane wave coefficients should be real. I am discarding the imaginary part now.")
|
||||
kdir_cart = kdir_cart.real
|
||||
|
||||
|
||||
E_cart = np.array(E_cart, copy=False)
|
||||
k_sph = cart2sph(kdir_cart)
|
||||
π̃_y, τ̃_y = get_π̃τ̃_y1(k_sph[1], nmax)
|
||||
my, ny = get_mn_y(nmax)
|
||||
nelem = len(my)
|
||||
U_y = 4*π * 1j**ny / (ny * (ny+1))
|
||||
θ̂ = sph_loccart2cart(np.array([0,1,0]), k_sph, axis=-1)
|
||||
φ̂ = sph_loccart2cart(np.array([0,0,1]), k_sph, axis=-1)
|
||||
p_y = np.sum( U_y[:,ň]
|
||||
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
|
||||
θ̂[ň,:]*τ̃_y[:,ň] + 1j*φ̂[ň,:]*π̃_y[:,ň]))
|
||||
* E_cart[ň,:],
|
||||
|
||||
# not properly vectorised part:
|
||||
π̃_y = np.empty(k_sph.shape[:-1] + (nelem,), dtype=np.complex_)
|
||||
τ̃_y = np.empty(π̃_y.shape, dtype=np.complex_)
|
||||
for i in np.ndindex(k_sph.shape[:-1]):
|
||||
π̃_y[i], τ̃_y[i] = get_π̃τ̃_y1(k_sph[i][1], nmax) # this shit is not vectorised
|
||||
|
||||
# last indices of the summands: [...,y,local cartesian component index (of E)]
|
||||
p_y = np.sum( U_y[...,:,ň]
|
||||
* np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * (
|
||||
θ̂[...,ň,:]*τ̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*π̃_y[...,:,ň]))
|
||||
* E_cart[...,ň,:],
|
||||
axis=-1)
|
||||
q_y = np.sum( U_y[:,ň]
|
||||
* np.conj(np.exp(1j*my[:,ň]*k_sph[2]) * (
|
||||
θ̂[ň,:]*π̃_y[:,ň] + 1j*φ̂[ň,:]*τ̃_y[:,ň]))
|
||||
* E_cart[ň,:],
|
||||
q_y = np.sum( U_y[...,:,ň]
|
||||
* np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * (
|
||||
θ̂[...,ň,:]*π̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*τ̃_y[...,:,ň]))
|
||||
* E_cart[...,ň,:],
|
||||
axis=-1)
|
||||
return (p_y, q_y)
|
||||
|
||||
|
|
Loading…
Reference in New Issue