Quaternion power to a real exponent.

Former-commit-id: e8dc72c04813e592dd1c5a0ccff2971374b3c99c
This commit is contained in:
Marek Nečada 2019-02-25 05:03:11 +00:00
parent 8829f50c53
commit e120464046
4 changed files with 182 additions and 4 deletions

View File

@ -2,6 +2,7 @@
# -----------------------------
import numpy as np
import cmath
from qpms_cdefs cimport *
cimport cython
from cython.parallel cimport parallel, prange
@ -617,3 +618,112 @@ cdef class trans_calculator:
return a, b
# TODO make possible to access the attributes (to show normalization etc)
# Quaternions from wigner.h
# (mainly for testing; use moble's quaternions in python)
cdef class cquat:
'''
Wrapper of the qpms_quat_t object, with the functionality
to evaluate Wigner D-matrix elements.
'''
cdef qpms_quat_t q
def __cinit__(self, double w, double x, double y, double z):
cdef qpms_quat4d_t p
p.c1 = w
p.ci = x
p.cj = y
p.ck = z
self.q = qpms_quat_2c_from_4d(p)
def __repr__(self): # TODO make this look like a quaternion with i,j,k
return repr(self.r)
def __add__(cquat self, cquat other):
# TODO add real numbers
res = cquat(0,0,0,0)
res.q = qpms_quat_add(self.q, other.q)
return res
def __mul__(cquat self, cquat other):
res = cquat(0,0,0,0)
res.q = qpms_quat_mult(self.q, other.q)
return res
def __neg__(cquat self):
res = cquat(0,0,0,0)
res.q = qpms_quat_rscale(-1, self.q)
return res
def __sub__(cquat self, cquat other):
res = cquat(0,0,0,0)
res.q = qpms_quat_add(self.q, qpms_quat_rscale(-1,other.q))
return res
def __abs__(self):
return qpms_quat_norm(self.q)
def norm(self):
return qpms_quat_norm(self.q)
def imnorm(self):
return qpms_quat_imnorm(self.q)
def exp(self):
res = cquat(0,0,0,0)
res.q = qpms_quat_exp(self.q)
return res
def log(self):
res = cquat(0,0,0,0)
res.q = qpms_quat_exp(self.q)
return res
def __pow__(cquat self, double other, _):
res = cquat(0,0,0,0)
res.q = qpms_quat_pow(self.q, other)
return res
def normalise(self):
res = cquat(0,0,0,0)
res.q = qpms_quat_normalise(self.q)
return res
property c:
'''
Quaternion representation as two complex numbers
'''
def __get__(self):
return (self.q.a, self.q.b)
def __set__(self, RaRb):
self.q.a = RaRb[0]
self.q.b = RaRb[1]
property r:
'''
Quaternion representation as four real numbers
'''
def __get__(self):
cdef qpms_quat4d_t p
p = qpms_quat_4d_from_2c(self.q)
return (p.c1, p.ci, p.cj, p.ck)
def __set__(self, wxyz):
cdef qpms_quat4d_t p
p.c1 = wxyz[0]
p.ci = wxyz[1]
p.cj = wxyz[2]
p.ck = wxyz[3]
self.q = qpms_quat_2c_from_4d(p)
def wignerDelem(self, qpms_l_t l, qpms_m_t mp, qpms_m_t m):
'''
Returns an element of a bosonic Wigner matrix.
'''
# don't crash on bad l, m here
if (abs(m) > l or abs(mp) > l):
return 0
return qpms_wignerD_elem(self.q, l, mp, m)

View File

@ -34,6 +34,9 @@ cdef extern from "qpms_types.h":
QPMS_NORMALISATION_SPHARM
QPMS_NORMALISATION_SPHARM_CS
QPMS_NORMALISATION_UNDEF
ctypedef int qpms_lm_t
ctypedef int qpms_l_t
ctypedef int qpms_m_t
# maybe more if needed
# Point generators from lattices.h
@ -69,9 +72,32 @@ cdef extern from "lattices.h":
PGen PGen_1D_new_minMaxR(double period, double offset, double minR, bint inc_minR,
double maxR, bint inc_maxR, PGen_1D_incrementDirection incdir)
ctypedef double complex cdouble
cdef extern from "wigner.h":
struct qpms_quat_t:
cdouble a
cdouble b
struct qpms_quat4d_t:
double c1
double ci
double cj
double ck
qpms_quat_t qpms_quat_2c_from_4d(qpms_quat4d_t q)
qpms_quat4d_t qpms_quat_4d_from_2c(qpms_quat_t q)
qpms_quat_t qpms_quat_mult(qpms_quat_t p, qpms_quat_t q)
qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q)
qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q)
qpms_quat_t qpms_quat_conj(qpms_quat_t q)
double qpms_quat_norm(qpms_quat_t q)
double qpms_quat_imnorm(qpms_quat_t q)
qpms_quat_t qpms_quat_normalise(qpms_quat_t q)
qpms_quat_t qpms_quat_log(qpms_quat_t q)
qpms_quat_t qpms_quat_exp(qpms_quat_t q)
qpms_quat_t qpms_quat_pow(qpms_quat_t q, double exponent)
cdouble qpms_wignerD_elem(qpms_quat_t q, qpms_l_t l,
qpms_m_t mp, qpms_m_t m)
#cdef extern from "numpy/arrayobject.h":
# cdef enum NPY_TYPES:

View File

@ -28,6 +28,14 @@ static inline qpms_quat_t qpms_quat_2c_from_4d (qpms_quat4d_t q) {
return q2c;
}
/// Conversion from the 2*complex to the 4*double quaternion.
// TODO is this really correct?
// I.e. do the axis from moble's text match this convention?
static inline qpms_quat4d_t qpms_quat_4d_from_2c (qpms_quat_t q) {
qpms_quat4d_t q4d = {creal(q.a), cimag(q.b), creal(q.b), cimag(q.a)};
return q4d;
}
/// Quaternion multiplication.
/**
* \f[ (P Q)_a = P_a Q_a - \bar P_b Q_b, \f]
@ -48,6 +56,18 @@ static inline qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q) {
return r;
}
/// Exponential function of a quaternion \f$e^Q$\f.
static inline qpms_quat_t qpms_quat_exp(const qpms_quat_t q) {
const qpms_quat4d_t q4 = qpms_quat_4d_from_2c(q);
const double vn = sqrt(q4.ci*q4.ci + q4.cj*q4.cj + q4.ck *q4.ck);
const double ea = exp(q4.c1);
const double cv = ea*sin(vn)/vn; // "vector" part common prefactor
const qpms_quat4d_t r4 = {ea * cos(vn), cv*q4.ci, cv*q4.cj, cv*q4.ck};
return qpms_quat_2c_from_4d(r4);
}
/// Quaternion scaling with a real number.
static inline qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q) {
qpms_quat_t r = {s * q.a, s * q.b};
@ -61,22 +81,44 @@ static const qpms_quat_t qpms_quat_j = {0, 1};
static const qpms_quat_t qpms_quat_k = {0, I};
/// Quaternion conjugation.
static inline qpms_quat_t qpms_quat_conj(qpms_quat_t q) {
static inline qpms_quat_t qpms_quat_conj(const qpms_quat_t q) {
qpms_quat_t r = {conj(q.a), -q.b};
return r;
}
/// Quaternion norm.
static inline double qpms_quat_norm(qpms_quat_t q) {
static inline double qpms_quat_norm(const qpms_quat_t q) {
return sqrt(creal(q.a * conj(q.a) + q.b * conj(q.b)));
}
/// Norm of the quaternion imaginary (vector) part.
static inline double qpms_quat_imnorm(const qpms_quat_t q) {
const double z = cimag(q.a), x = cimag(q.b), y = creal(q.b);
return sqrt(z*z + x*x + y*y);
}
/// Quaternion normalisation to unit norm.
static inline qpms_quat_t qpms_quat_normalise(qpms_quat_t q) {
double n = qpms_quat_norm(q);
return qpms_quat_rscale(1/n, q);
}
/// Logarithm of a quaternion.
static inline qpms_quat_t qpms_quat_log(const qpms_quat_t q) {
const double n = qpms_quat_norm(q);
const double vc = acos(creal(q.a)/n) / qpms_quat_imnorm(q);
const qpms_quat_t r = {log(n) + cimag(q.a)*vc*I,
q.b*vc};
return r;
}
/// Quaternion power to a real exponent.
static inline qpms_quat_t qpms_quat_pow(const qpms_quat_t q, const double exponent) {
const qpms_quat_t qe = qpms_quat_rscale(exponent,
qpms_quat_log(q));
return qpms_quat_exp(qe);
}
/// Wigner D matrix element from a rotator quaternion for integer l.
/**
* The D matrix are calculated using formulae (3), (4), (6), (7) from

View File

@ -36,7 +36,7 @@ qpms_c = Extension('qpms_c',
)
setup(name='qpms',
version = "0.2.993",
version = "0.2.994",
packages=['qpms'],
setup_requires=['cython>0.28'],
install_requires=['cython>=0.21','quaternion','spherical_functions',