Quaternion power to a real exponent.
Former-commit-id: e8dc72c04813e592dd1c5a0ccff2971374b3c99c
This commit is contained in:
parent
8829f50c53
commit
e120464046
110
qpms/qpms_c.pyx
110
qpms/qpms_c.pyx
|
@ -2,6 +2,7 @@
|
|||
# -----------------------------
|
||||
|
||||
import numpy as np
|
||||
import cmath
|
||||
from qpms_cdefs cimport *
|
||||
cimport cython
|
||||
from cython.parallel cimport parallel, prange
|
||||
|
@ -617,3 +618,112 @@ cdef class trans_calculator:
|
|||
return a, b
|
||||
|
||||
# TODO make possible to access the attributes (to show normalization etc)
|
||||
|
||||
|
||||
|
||||
# Quaternions from wigner.h
|
||||
# (mainly for testing; use moble's quaternions in python)
|
||||
|
||||
cdef class cquat:
|
||||
'''
|
||||
Wrapper of the qpms_quat_t object, with the functionality
|
||||
to evaluate Wigner D-matrix elements.
|
||||
'''
|
||||
cdef qpms_quat_t q
|
||||
|
||||
def __cinit__(self, double w, double x, double y, double z):
|
||||
cdef qpms_quat4d_t p
|
||||
p.c1 = w
|
||||
p.ci = x
|
||||
p.cj = y
|
||||
p.ck = z
|
||||
self.q = qpms_quat_2c_from_4d(p)
|
||||
|
||||
def __repr__(self): # TODO make this look like a quaternion with i,j,k
|
||||
return repr(self.r)
|
||||
|
||||
def __add__(cquat self, cquat other):
|
||||
# TODO add real numbers
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_add(self.q, other.q)
|
||||
return res
|
||||
|
||||
def __mul__(cquat self, cquat other):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_mult(self.q, other.q)
|
||||
return res
|
||||
|
||||
def __neg__(cquat self):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_rscale(-1, self.q)
|
||||
return res
|
||||
|
||||
def __sub__(cquat self, cquat other):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_add(self.q, qpms_quat_rscale(-1,other.q))
|
||||
return res
|
||||
|
||||
def __abs__(self):
|
||||
return qpms_quat_norm(self.q)
|
||||
|
||||
def norm(self):
|
||||
return qpms_quat_norm(self.q)
|
||||
|
||||
def imnorm(self):
|
||||
return qpms_quat_imnorm(self.q)
|
||||
|
||||
def exp(self):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_exp(self.q)
|
||||
return res
|
||||
|
||||
def log(self):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_exp(self.q)
|
||||
return res
|
||||
|
||||
def __pow__(cquat self, double other, _):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_pow(self.q, other)
|
||||
return res
|
||||
|
||||
def normalise(self):
|
||||
res = cquat(0,0,0,0)
|
||||
res.q = qpms_quat_normalise(self.q)
|
||||
return res
|
||||
|
||||
property c:
|
||||
'''
|
||||
Quaternion representation as two complex numbers
|
||||
'''
|
||||
def __get__(self):
|
||||
return (self.q.a, self.q.b)
|
||||
def __set__(self, RaRb):
|
||||
self.q.a = RaRb[0]
|
||||
self.q.b = RaRb[1]
|
||||
|
||||
property r:
|
||||
'''
|
||||
Quaternion representation as four real numbers
|
||||
'''
|
||||
def __get__(self):
|
||||
cdef qpms_quat4d_t p
|
||||
p = qpms_quat_4d_from_2c(self.q)
|
||||
return (p.c1, p.ci, p.cj, p.ck)
|
||||
def __set__(self, wxyz):
|
||||
cdef qpms_quat4d_t p
|
||||
p.c1 = wxyz[0]
|
||||
p.ci = wxyz[1]
|
||||
p.cj = wxyz[2]
|
||||
p.ck = wxyz[3]
|
||||
self.q = qpms_quat_2c_from_4d(p)
|
||||
|
||||
def wignerDelem(self, qpms_l_t l, qpms_m_t mp, qpms_m_t m):
|
||||
'''
|
||||
Returns an element of a bosonic Wigner matrix.
|
||||
'''
|
||||
# don't crash on bad l, m here
|
||||
if (abs(m) > l or abs(mp) > l):
|
||||
return 0
|
||||
return qpms_wignerD_elem(self.q, l, mp, m)
|
||||
|
||||
|
|
|
@ -34,6 +34,9 @@ cdef extern from "qpms_types.h":
|
|||
QPMS_NORMALISATION_SPHARM
|
||||
QPMS_NORMALISATION_SPHARM_CS
|
||||
QPMS_NORMALISATION_UNDEF
|
||||
ctypedef int qpms_lm_t
|
||||
ctypedef int qpms_l_t
|
||||
ctypedef int qpms_m_t
|
||||
# maybe more if needed
|
||||
|
||||
# Point generators from lattices.h
|
||||
|
@ -69,9 +72,32 @@ cdef extern from "lattices.h":
|
|||
PGen PGen_1D_new_minMaxR(double period, double offset, double minR, bint inc_minR,
|
||||
double maxR, bint inc_maxR, PGen_1D_incrementDirection incdir)
|
||||
|
||||
|
||||
ctypedef double complex cdouble
|
||||
|
||||
cdef extern from "wigner.h":
|
||||
struct qpms_quat_t:
|
||||
cdouble a
|
||||
cdouble b
|
||||
struct qpms_quat4d_t:
|
||||
double c1
|
||||
double ci
|
||||
double cj
|
||||
double ck
|
||||
qpms_quat_t qpms_quat_2c_from_4d(qpms_quat4d_t q)
|
||||
qpms_quat4d_t qpms_quat_4d_from_2c(qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_mult(qpms_quat_t p, qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_conj(qpms_quat_t q)
|
||||
double qpms_quat_norm(qpms_quat_t q)
|
||||
double qpms_quat_imnorm(qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_normalise(qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_log(qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_exp(qpms_quat_t q)
|
||||
qpms_quat_t qpms_quat_pow(qpms_quat_t q, double exponent)
|
||||
cdouble qpms_wignerD_elem(qpms_quat_t q, qpms_l_t l,
|
||||
qpms_m_t mp, qpms_m_t m)
|
||||
|
||||
|
||||
#cdef extern from "numpy/arrayobject.h":
|
||||
# cdef enum NPY_TYPES:
|
||||
|
|
|
@ -28,6 +28,14 @@ static inline qpms_quat_t qpms_quat_2c_from_4d (qpms_quat4d_t q) {
|
|||
return q2c;
|
||||
}
|
||||
|
||||
/// Conversion from the 2*complex to the 4*double quaternion.
|
||||
// TODO is this really correct?
|
||||
// I.e. do the axis from moble's text match this convention?
|
||||
static inline qpms_quat4d_t qpms_quat_4d_from_2c (qpms_quat_t q) {
|
||||
qpms_quat4d_t q4d = {creal(q.a), cimag(q.b), creal(q.b), cimag(q.a)};
|
||||
return q4d;
|
||||
}
|
||||
|
||||
/// Quaternion multiplication.
|
||||
/**
|
||||
* \f[ (P Q)_a = P_a Q_a - \bar P_b Q_b, \f]
|
||||
|
@ -48,6 +56,18 @@ static inline qpms_quat_t qpms_quat_add(qpms_quat_t p, qpms_quat_t q) {
|
|||
return r;
|
||||
}
|
||||
|
||||
/// Exponential function of a quaternion \f$e^Q$\f.
|
||||
static inline qpms_quat_t qpms_quat_exp(const qpms_quat_t q) {
|
||||
const qpms_quat4d_t q4 = qpms_quat_4d_from_2c(q);
|
||||
const double vn = sqrt(q4.ci*q4.ci + q4.cj*q4.cj + q4.ck *q4.ck);
|
||||
const double ea = exp(q4.c1);
|
||||
const double cv = ea*sin(vn)/vn; // "vector" part common prefactor
|
||||
const qpms_quat4d_t r4 = {ea * cos(vn), cv*q4.ci, cv*q4.cj, cv*q4.ck};
|
||||
return qpms_quat_2c_from_4d(r4);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Quaternion scaling with a real number.
|
||||
static inline qpms_quat_t qpms_quat_rscale(double s, qpms_quat_t q) {
|
||||
qpms_quat_t r = {s * q.a, s * q.b};
|
||||
|
@ -61,22 +81,44 @@ static const qpms_quat_t qpms_quat_j = {0, 1};
|
|||
static const qpms_quat_t qpms_quat_k = {0, I};
|
||||
|
||||
/// Quaternion conjugation.
|
||||
static inline qpms_quat_t qpms_quat_conj(qpms_quat_t q) {
|
||||
static inline qpms_quat_t qpms_quat_conj(const qpms_quat_t q) {
|
||||
qpms_quat_t r = {conj(q.a), -q.b};
|
||||
return r;
|
||||
}
|
||||
|
||||
/// Quaternion norm.
|
||||
static inline double qpms_quat_norm(qpms_quat_t q) {
|
||||
static inline double qpms_quat_norm(const qpms_quat_t q) {
|
||||
return sqrt(creal(q.a * conj(q.a) + q.b * conj(q.b)));
|
||||
}
|
||||
|
||||
/// Norm of the quaternion imaginary (vector) part.
|
||||
static inline double qpms_quat_imnorm(const qpms_quat_t q) {
|
||||
const double z = cimag(q.a), x = cimag(q.b), y = creal(q.b);
|
||||
return sqrt(z*z + x*x + y*y);
|
||||
}
|
||||
|
||||
/// Quaternion normalisation to unit norm.
|
||||
static inline qpms_quat_t qpms_quat_normalise(qpms_quat_t q) {
|
||||
double n = qpms_quat_norm(q);
|
||||
return qpms_quat_rscale(1/n, q);
|
||||
}
|
||||
|
||||
/// Logarithm of a quaternion.
|
||||
static inline qpms_quat_t qpms_quat_log(const qpms_quat_t q) {
|
||||
const double n = qpms_quat_norm(q);
|
||||
const double vc = acos(creal(q.a)/n) / qpms_quat_imnorm(q);
|
||||
const qpms_quat_t r = {log(n) + cimag(q.a)*vc*I,
|
||||
q.b*vc};
|
||||
return r;
|
||||
}
|
||||
|
||||
/// Quaternion power to a real exponent.
|
||||
static inline qpms_quat_t qpms_quat_pow(const qpms_quat_t q, const double exponent) {
|
||||
const qpms_quat_t qe = qpms_quat_rscale(exponent,
|
||||
qpms_quat_log(q));
|
||||
return qpms_quat_exp(qe);
|
||||
}
|
||||
|
||||
/// Wigner D matrix element from a rotator quaternion for integer l.
|
||||
/**
|
||||
* The D matrix are calculated using formulae (3), (4), (6), (7) from
|
||||
|
|
Loading…
Reference in New Issue