WSWF translations (TODO explicit form of the ops)
Former-commit-id: 44f286281af3f44208c2b1e2aabbe7234b0cd675
This commit is contained in:
parent
b259bd46b4
commit
e26ca79a53
|
@ -117,6 +117,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\uvec}[1]{\mathbf{\hat{#1}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ud}{\mathrm{d}}
|
||||
\end_inset
|
||||
|
@ -162,6 +167,16 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vsh}[3]{\vect A_{#1,#2,#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vshD}[3]{\vect A'_{#1,#2,#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\hgfr}{\mathbf{F}}
|
||||
\end_inset
|
||||
|
@ -213,7 +228,7 @@
|
|||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\particle}{\mathrm{\Omega}}
|
||||
\newcommand{\particle}{\mathrm{\Theta}}
|
||||
\end_inset
|
||||
|
||||
|
||||
|
@ -232,6 +247,71 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffp}[1]{a_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffptlm}[4]{\rcoeffp{#1}_{#2#3#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfrtlm}[3]{\vect v_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeffp}[1]{f_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoeffptlm}[4]{\outcoeffp{#1}_{#2#3#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfouttlm}[3]{\vect u_{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Tp}[1]{T_{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\openball}[2]{B_{#1}\left(#2\right)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\closedball}[2]{B_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\tropr}{\mathcal{R}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\troprp}[2]{\mathcal{\tropr}_{#1\leftarrow#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\trops}{\mathcal{S}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\tropsp}[2]{\mathcal{\trops}_{#1\leftarrow#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
|
@ -450,6 +530,16 @@ filename "finite.lyx"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "finite-cs.lyx"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -0,0 +1,504 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Subsection
|
||||
Dual vector spherical harmonics
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For evaluation of expansion coefficients of incident fields, it is useful
|
||||
to introduce „dual“ vector spherical harmonics
|
||||
\begin_inset Formula $\vshD{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
defined by duality relation
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
(complex conjugation not implied in the dot product here).
|
||||
In our convention, we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Translation operators
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let
|
||||
\begin_inset Formula $\vect r_{1},\vect r_{2}$
|
||||
\end_inset
|
||||
|
||||
be two different origins; a regular VSWF with origin
|
||||
\begin_inset Formula $\vect r_{1}$
|
||||
\end_inset
|
||||
|
||||
can be always expanded in terms of regular VSWFs with origin
|
||||
\begin_inset Formula $\vect r_{2}$
|
||||
\end_inset
|
||||
|
||||
as follows:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where an explicit formula for the (regular)
|
||||
\emph on
|
||||
translation operator
|
||||
\emph default
|
||||
|
||||
\begin_inset Formula $\tropr$
|
||||
\end_inset
|
||||
|
||||
reads in eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:translation operator"
|
||||
|
||||
\end_inset
|
||||
|
||||
below.
|
||||
For singular (outgoing) waves, the form of the expansion differs inside
|
||||
and outside the ball
|
||||
\begin_inset Formula $\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}:$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||||
\end{cases},\label{eq:singular vswf translation}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where the singular translation operator
|
||||
\begin_inset Formula $\trops$
|
||||
\end_inset
|
||||
|
||||
has the same form as
|
||||
\begin_inset Formula $\tropr$
|
||||
\end_inset
|
||||
|
||||
in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:translation operator"
|
||||
|
||||
\end_inset
|
||||
|
||||
except the regular spherical Bessel functions
|
||||
\begin_inset Formula $j_{l}$
|
||||
\end_inset
|
||||
|
||||
are replaced with spherical Hankel functions
|
||||
\begin_inset Formula $h_{l}^{(1)}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO note about expansion exactly on the sphere.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As MSTMM deals most of the time with the
|
||||
\emph on
|
||||
expansion coefficients
|
||||
\emph default
|
||||
of fields
|
||||
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
in different origins
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
rather than with the VSWFs directly, let us write down how
|
||||
\emph on
|
||||
they
|
||||
\emph default
|
||||
transform under translation.
|
||||
Let us assume the field can be in terms of regular waves everywhere, and
|
||||
expand it in two different origins
|
||||
\begin_inset Formula $\vect r_{p},\vect r_{q}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Re-expanding the waves around
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
in terms of waves around
|
||||
\begin_inset Formula $\vect r_{q}$
|
||||
\end_inset
|
||||
|
||||
using
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and comparing to the original expansion around
|
||||
\begin_inset Formula $\vect r_{q}$
|
||||
\end_inset
|
||||
|
||||
, we obtain
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
For the sake of readability, we introduce a shorthand matrix form for
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf coefficient translation"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
(note the reversed indices; TODO redefine them in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:singular vswf translation"
|
||||
|
||||
\end_inset
|
||||
|
||||
? Similarly, if we had only outgoing waves in the original expansion around
|
||||
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
||||
, we would get
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
for the expansion inside the ball
|
||||
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CHECKME
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
outside.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The translation operator can be expressed explicitly as
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Plane wave expansion coefficients
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A transversal (
|
||||
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
|
||||
\end_inset
|
||||
|
||||
) plane wave propagating in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
with (complex) amplitude
|
||||
\begin_inset Formula $\vect E_{0}$
|
||||
\end_inset
|
||||
|
||||
can be expanded into regular VSWFs [REF KRIS]
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Cross-sections (single-particle)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Extinction, scattering and absorption cross sections of a single particle
|
||||
irradiated by a plane wave propagating in direction
|
||||
\begin_inset Formula $\uvec k$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "sect. 7.8.2"
|
||||
key "kristensson_scattering_2016"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
|
||||
\end_inset
|
||||
|
||||
is the vector of plane wave expansion coefficients as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:plane wave expansion"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For a system of many scatterers, Kristensson derives only the scattering
|
||||
cross section formula
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right)=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left\Vert \outcoeffp p\right\Vert ^{2}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Let us derive the many-particle scattering and absorption cross sections.
|
||||
First, let us take a ball circumscribing all the scatterers at once,
|
||||
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\particle$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Outside
|
||||
\begin_inset Formula $\openball R{\vect r_{\square}}$
|
||||
\end_inset
|
||||
|
||||
, we can describe the EM fields as if there was only a single scatterer,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
|
||||
\end_inset
|
||||
|
||||
are the vectors of VSWF expansion coefficients of the incident and total
|
||||
scattered fields, respectively, at origin
|
||||
\begin_inset Formula $\vect r_{\square}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In principle, one could evaluate
|
||||
\begin_inset Formula $\outcoeffp{\square}$
|
||||
\end_inset
|
||||
|
||||
using the translation operators (REF!!!) and use the single-scatterer formulae
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:extincion CS single"
|
||||
|
||||
\end_inset
|
||||
|
||||
–
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS single"
|
||||
|
||||
\end_inset
|
||||
|
||||
to obtain the cross sections.
|
||||
However, this is not suitable for numerical evaluation with truncation
|
||||
in multipole degree; hence we need to express them in terms of particle-wise
|
||||
expansions
|
||||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue