Merge branch 'master' of version.aalto.fi:qd/qpms

Former-commit-id: 023a3853d37986562fb1130e599b9970a964e6e0
This commit is contained in:
Marek Nečada 2019-02-27 09:46:37 +02:00
commit e77fea8b7c
1 changed files with 8 additions and 10 deletions

View File

@ -4,7 +4,7 @@ from qpms_c import *
import scipy import scipy
from scipy.constants import epsilon_0 as ε_0, c, pi as π, e, hbar as , mu_0 as μ_0 from scipy.constants import epsilon_0 as ε_0, c, pi as π, e, hbar as , mu_0 as μ_0
eV = e eV = e
from scipy.special import lpmn, lpmv, sph_jn, sph_yn, poch, gammaln from scipy.special import lpmn, lpmv, spherical_jn, spherical_yn, poch, gammaln
from scipy.misc import factorial from scipy.misc import factorial
import math import math
import cmath import cmath
@ -268,27 +268,25 @@ def vswf_yr(pos_sph,lMax,J=1):
M_y[i], N_y[i] = vswf_yr1(pos_sph[i], lMax, J) # non-vectorised function M_y[i], N_y[i] = vswf_yr1(pos_sph[i], lMax, J) # non-vectorised function
return (M_y, N_y) return (M_y, N_y)
from scipy.special import sph_jn, sph_yn
#@jit #@jit
def _sph_zn_1(n,z): def _sph_zn_1(n,z):
return sph_jn(n,z) return spherical_jn(n,z)
#@jit #@jit
def _sph_zn_2(n,z): def _sph_zn_2(n,z):
return sph_yn(n,z) return spherical_yn(n,z)
#@jit #@jit
def _sph_zn_3(n,z): def _sph_zn_3(n,z):
besj=sph_jn(n,z) besj=spherical_jn(n,z)
besy=sph_yn(n,z) besy=spherical_yn(n,z)
return (besj[0] + 1j*besy[0],besj[1] + 1j*besy[1]) return (besj[0] + 1j*besy[0],besj[1] + 1j*besy[1])
#@jit #@jit
def _sph_zn_4(n,z): def _sph_zn_4(n,z):
besj=sph_jn(n,z) besj=spherical_jn(n,z)
besy=sph_yn(n,z) besy=spherical_yn(n,z)
return (besj[0] - 1j*besy[0],besj[1] - 1j*besy[1]) return (besj[0] - 1j*besy[0],besj[1] - 1j*besy[1])
_sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4] _sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
# computes bessel/hankel functions for orders from 0 up to n; drops # computes bessel/hankel functions for orders from 0 up to n;
# the derivatives which are also included in scipy.special.sph_jn/yn
#@jit #@jit
def zJn(n, z, J=1): def zJn(n, z, J=1):
return _sph_zn[J-1](n=n,z=z) return _sph_zn[J-1](n=n,z=z)