gaunt pokračování přepisu

Former-commit-id: aed3bfd9a4652e79e1619c22b873c82ea3ed17ea
This commit is contained in:
Marek Nečada 2017-03-17 19:58:50 +02:00
parent d93346070d
commit e98a4656ca
2 changed files with 196 additions and 2 deletions

View File

@ -2,6 +2,10 @@
#include <math.h>
#include <stdio.h>
#define ZERO_THRESHOLD 1.e-8
// "Besides, the determined Real Programmer can write FORTRAN programs in any language."
// -- Ed Post, Real Programmers Don't Use Pascal, 1982.
// logarithm of factorial (from basicsubs.f90)
double lnf (double z) {
@ -37,9 +41,93 @@ double f_a0 (int m, int n, int mu, int nu) {
return exp(logw+logp);
}
// coefficient Ap(m,n,mu,nu,p) (from vec_trans.f90)
int Ap(int m, int n, int mu, int nu, int p) {
return p*(p-1)*(m-mu)-(m+mu)*(n-nu)*(n+nu+1);
}
/*
double gaunt_gevero_direct_convert(int m, int n, int mu, int nu, int qmax, double *v_aq, int *error) {
// coefficient a(m,n,mu,nu,1) normalized by the backward recursion (from vec_trans.f90)
double f_a1norm(int m, int n, int mu, int nu) {
int n4 = n + nu - m - mu;
return ((2.*n + 2.*nu - 3.) / 2.) * (1. - ((2.*n + 2.*nu - 1.) / (n4 * (n4-1.)))
* ((m - n) * (m - n + 1.) / (2.*n - 1.) + (mu-nu) * (mu-nu+1.)/(2.nu-1.)));
}
// coefficient a(m,n,mu,nu,2) normalized by the backward recursion (From vec_trans.f90)
double f_a2norm(int m, int n, int mu, int nu) {
double n4 = n + nu - m - mu;
double n2nu = 2*n + 2*nu;
double mn = m - n;
double munu = mu - nu;
return ((n2nu-1.)*(n2nu-7.)/4.) * \
( ((n2nu-3.)/(n4*(n4-1.))) * \
( ((n2nu-5.)/(2.*(n4-2.)*(n4-3.))) * \
( mn*(mn+1.)*(mn+2.)*(mn+3.)/((2.*n-1.)*(2.*n-3.)) + \
2.*mn*(mn+1.)*munu*(munu+1.)/((2.*n-1.)*(2.*nu-1.)) + \
munu*(munu+1.)*(munu+2.)*(munu+3.)/((2.*nu-1.)*(2.*nu-3.)) \
) - mn*(mn+1.)/(2.*n-1.) - munu*(munu+1.)/(2.*nu-1.) ) +0.5);
}
// just for convenience square of ints
int isq(int x) {return x * x;}
double f_alpha(int n, int nu, int p) {
return (isq(p) - isq(n-nu))*(isq(p)-isq(n+nu+1)) / (double)(4*isq(p)-1);
}
// coeff a(m,n,mu,nu,2) normalizzato per la backward recursion calcolato questa volta per ricorsione
// (from vec_trans.f90)
double f_a2normr(int m, int n, int mu, int nu, double a1norm) {
int p = n + nu - 4;
int p1 = p - m - mu;
int p2 = p + m + mu;
int Ap4 = f_Ap(m,n,mu,nu,p+4);
int Ap6 = f_Ap(m,n,mu,nu,p+6);
double alphap1=f_alpha(n,nu,p+1);
double alphap2=f_alpha(n,nu,p+2);
if (!Ap4) {
if(!Ap6) {
double c0=(p+2)*(p1+1)*alphap1;
double c1=(p+1)*(p2+2)*alphap2;
return (c1/c0)*a1norm;
} else /* Ap6 != 0 */ {
int Ap2=f_Ap(m,n,mu,nu,p+2);
int Ap3=f_Ap(m,n,mu,nu,p+3);
int Ap5=f_Ap(m,n,mu,nu,p+5);
double alphap5=f_alpha(n,nu,p+5);
double c0=(p+2)*(p+3)*(p+5)*(p1+1)*(p1+2)*(p1+4)*Ap6*alphap1;
double c1=(p+5)*(p1+4)*Ap6*(Ap2*Ap3+(p+1)*(p+3)*(p1+2)*(p2+2)*alphap2);
double c2=(p+2)*(p2+3)*Ap2*(Ap5*Ap6+(p+4)*(p+6)*(p1+5)*(p2+5)*alphap5);
return (c1/c0)*a1norm+(c2/c0);
}
} else /* Ap4 != 0 */ {
int Ap2=f_Ap(m,n,mu,nu,p+2);
int Ap3=f_Ap(m,n,mu,nu,p+3);
double alphap3=f_alpha(n,nu,p+3);
double alphap4=f_alpha(n,nu,p+4);
double c0=(p+2)*(p+3)*(p1+1)*(p1+2)*Ap4*alphap1;
double c1=Ap2*Ap3*Ap4+(p+1)*(p+3)*(p1+2)*(p2+2)*Ap4*alphap2 \
+ (p+2)*(p+4)*(p1+3)*(p2+3)*Ap2*alphap3;
double c2=-(p+2)*(p+3)*(p2+3)*(p2+4)*Ap2*alphap4;
return (c1/c0)*a1norm+(c2/c0);
}
}
// gaunt_xu from vec_trans.f90
// btw, what is the difference from gaunt_xu2?
double gaunt_xu2(int m, int n, int mu, int nu, int qmax, double *v_aq, int *error) {
int v_zero[qmax] = {0};
*error = 0;
@ -55,8 +143,108 @@ double gaunt_gevero_direct_convert(int m, int n, int mu, int nu, int qmax, doubl
break;
case 1:
v_aq[0] = f_a0(m,n,mu,nu);
v_aq[1] = v_aq[0] + f_a1norm(m,n,mu,nu);
break;
case 2:
v_aq[0] = f_a0(m,n,mu,nu);
v_aq[1] = v_aq[0] + f_a1norm(m,n,mu,nu);
v_aq[2] = v_aq[0] * f_a2normr(m,n,mu,nu,v_aq[1]/v_aq[0]);
break;
default:
if (m == 0 && mu == 0) {
v_aq[0] = f_a0(m,n,mu,nu);
// backward recursion
for (int q = 1; q <= qmax; ++q) {
int p = n + nu - 2*q;
double c0 = f_alpha(n,nu,p+1);
double c1 = f_alpha(n,nu,p+2);
v_aq[q] = (c1/c0) * v_aq[q-1];
}
else if (mu == m && nu == n) {
v_aq[0] = f_a0(m,n,mu,nu);
// backward recursion
for (int q = 1; q <= qmax; ++q) {
// calculate pre-coefficients
int p = n + nu - 2*q;
int p1 = p - m - mu;
int p2 = p + m + mu;
// calculate recursion coefficients
double c0 = (p+2) * (p1+1) * f_alpha(n,nu,p+1);
double c1 = (p+1) * (p2+2) * f_alpha(n,nu,p+2);
//recursion
v_aq[q] = (c1/c0) * v_aq[q-1];
}
} else if (mu == -m) {
v_aq[0] = f_a0(m,n,mu,nu);
v_aq[1] = f_a1norm(m,n,mu,nu)*v_aq[0];
// backward recursion
for (int q = 2; q <= qmaq; ++q) {
// calculate pre-coefficient
int p = n + nu - 2*q;
// calculate recursion coefficients
double c0 = f_alpha(n, nu, p+1);
double c1 = 4*isq(m) + f_alpha(n,nu,p+2) + f_alpha(n,nu,p+3);
double c2 = - f_alpha(n, nu, p+4);
// recursion
v_aq[q] = (c1/c0)*v_aq[q-1] + (c2/c0)*v_aq[q-2];
}
} else if // TODO vec_trans.f90:1233
!!!!!!!!!TODO CONTINUE HERE
/*
// gaunt_xu2 from vec_trans.f90
// btw, what is the difference from gaunt_xu?
double gaunt_xu2(int m, int n, int mu, int nu, int qmax, double *v_aq, int *error) {
int v_zero[qmax] = {0};
*error = 0;
if(abs(m)>n || abs(mu)=nu) {
*error = 1;
fprintf(stderr, "invalid values for m, n, mu or nu\n")
return NAN;
}
switch(qmax) {
case 0:
v_aq[0] = f_a0(m,n,mu,nu);
break;
case 1:
v_aq[0] = f_a0(m,n,mu,nu);
v_aq[1] = v_aq[0] + f_a1norm(m,n,mu,nu);
// Check for zeros
if (fabs(v_aq[1]/v_aq[0]) < ZERO_THRESHOLD) {
v_aq[1] = 0.;
v_zero[1] = 0.;
}
break;
case 2:
v_aq[0] = f_a0(m,n,mu,nu);
v_aq[1] = v_aq[0] + f_a1norm(m,n,mu,nu);
// Check for zeros
if (fabs(v_aq[1]/v_aq[0]) < ZERO_THRESHOLD) {
v_aq[1] = 0.;
v_zero[1] = 0.;
}
v_aq[2] = v_aq[0] * f_a2norm_
break;
!!!!!!!!!TODO CONTINUE HERE
*/

View File

@ -66,3 +66,9 @@ def get_y_mn_unsigned(int nmax):
ymn_plus[m,n] = i
i = i + 1
return(ymn_plus, ymn_minus)
cdef int q_max(int m, int n, int mu, int nu):
return min(n,nu,(n+nu-abs(m+mu)//2)
#cdef translation_coefficient_A(