From e9a2fe69ffab38b79b9d6f3cedec5d663f08b8e4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marek=20Ne=C4=8Dada?= Date: Tue, 25 Sep 2018 08:32:31 +0300 Subject: [PATCH] hexlaser tmatrixtest begin Former-commit-id: 447f43d9535318021948783cf086ceb1847b7469 --- notes/hexlaser-tmatrixtext.lyx | 247 +++++++++++++++++++++++++++++++++ 1 file changed, 247 insertions(+) create mode 100644 notes/hexlaser-tmatrixtext.lyx diff --git a/notes/hexlaser-tmatrixtext.lyx b/notes/hexlaser-tmatrixtext.lyx new file mode 100644 index 0000000..585e291 --- /dev/null +++ b/notes/hexlaser-tmatrixtext.lyx @@ -0,0 +1,247 @@ +#LyX 2.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 474 +\begin_document +\begin_header +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language finnish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman TeX Gyre Pagella +\font_sans default +\font_typewriter default +\font_math auto +\font_default_family default +\use_non_tex_fonts true +\font_sc false +\font_osf true +\font_sf_scale 100 +\font_tt_scale 100 +\graphics default +\default_output_format pdf4 +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref true +\pdf_title "Sähköpajan päiväkirja" +\pdf_author "Marek Nečada" +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\quotes_language swedish +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard + +\lang english +\begin_inset FormulaMacro +\newcommand{\vect}[1]{\mathbf{#1}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1,#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\svwfr}[3]{\mathbf{u}_{#1,#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\svwfs}[3]{\mathbf{v}_{#1,#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffsi}[3]{a_{#1,#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffsip}[4]{a_{#1}^{#2,#3,#4}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffri}[3]{p_{#1,#2}^{#3}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\coeffrip}[4]{p_{#1}^{#2,#3,#4}} +\end_inset + + +\end_layout + +\begin_layout Standard +In this approach, scattering properties of single nanoparticles are first + computed in terms of vector sperical wavefunctions (VSWFs)—the field incident + onto the +\begin_inset Formula $n$ +\end_inset + +-th nanoparticle from external sources can be expanded as +\begin_inset Formula +\[ +\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right) +\] + +\end_inset + +where +\begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$ +\end_inset + +, +\begin_inset Formula $\vect R_{n}$ +\end_inset + + being the position of the centre of +\begin_inset Formula $n$ +\end_inset + +-th nanoparticle and +\begin_inset Formula $\svwfr lmt$ +\end_inset + + are the regular VSWFs which can be expressed in terms of regular spherical + Bessel functions of +\begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$ +\end_inset + + and spherical harmonics +\begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$ +\end_inset + +; the expressions can be found e.g. + in REF +\begin_inset Note Note +status open + +\begin_layout Plain Layout +few words about different conventions? +\end_layout + +\end_inset + +. + On the other hand, the field scattered by the particle can be expanded + in terms of singular VSWFs +\begin_inset Formula $\svwfs lmt$ +\end_inset + + which differ from the regular ones by regular spherical Bessel functions + being replaced with spherical Hankel functions +\begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$ +\end_inset + +, +\begin_inset Formula +\[ +\vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right). +\] + +\end_inset + +The expansion coefficients +\begin_inset Formula $\coeffsip nlmt$ +\end_inset + +, +\begin_inset Formula $t=\mathrm{E},\mathrm{M}$ +\end_inset + + are related to the electric and magnetic multipole polarisation amplitudes + of the nanoparticle. + +\end_layout + +\begin_layout Standard +At a given frequency, assuming the system is linear, the relation between + the expansion coefficients in the VSWF bases is given by the so-called + +\begin_inset Formula $T$ +\end_inset + +-matrix, +\begin_inset Formula +\[ +\coeffsip nlmt=\sum_{l,m,t}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}. +\] + +\end_inset + +The +\begin_inset Formula $T$ +\end_inset + +-matrix is given by the shape and composition of the particle and fully + describes its scattering properties. + In theory it is infinite-dimensional, but in practice (at least for subwaveleng +th nanoparticles) its elements drop very quickly to negligible values with + growing degree indices +\begin_inset Formula $l,l'$ +\end_inset + +, enabling to take into account only the elements up to some finite degree, + +\begin_inset Formula $l,l'\le l_{\mathrm{max}}$ +\end_inset + +. +\end_layout + +\end_body +\end_document