Unfinished generation of equilateral triangular lattices (dudom).

Former-commit-id: 4cc4da2e9755c279aba0d14c296f76de2cbebd04
This commit is contained in:
Marek Nečada 2018-08-22 17:14:07 +03:00
parent 4e7bc364ac
commit ec7edda67e
2 changed files with 201 additions and 0 deletions

88
qpms/lattices.h Normal file
View File

@ -0,0 +1,88 @@
#ifndef LATTICES_H
#define LATTICES_H
#include <math.h>
#include <stdbool.h>
#define M_SQRT3 1.7320508075688772935274463415058724
// This might be reduced to x, y only; not sure yet
typedef struct {
double key; // distance key in a given lattice
double x, y, r, phi;
} point2d;
static inline point2d point2d_fromxy(const double x, const double y) {
point2d p;
p.x = x;
p.y = y;
p.r = sqrt(x*x+y*y);
p.phi = atan2(y, x);
return p;
}
/*
* General set of points ordered by the r-coordinate.
* Typically, this will include all lattice inside a certain circle.
* This structure is internally used by the "lattice generators" below.
* It does not have its memory management of its own, as it is handled
* by the "generators". For everything except the generators,
* this structure shall be read-only.
*/
typedef struct {
size_t nrs; // number of different radii
double *rs; // the radii; of length nrs (largest contained radius == rs[nrs-1])
point2d **points_at_r; // of length nrs+1
/* // redundand (therefore removed) members
* point2d *points; // redundant as it is the same as points_at_r[0]
* size_t npoints; // redundant as it is the same as points_at_r[nrs]-points_at_r[0]
*/
} points2d_rordered_t;
/*
* EQUILATERAL TRIANGULAR LATTICE
*/
typedef enum {
TRIANGULAR_VERTICAL, // there is a lattice base vector parallel to the y-axis
TRIANGULAR_HORIZONTAL // there is a lattice base vector parallel to the x-axis
} TriangularLatticeOrientation;
// implementation data structures; not needed in the header file
typedef struct triangular_lattice_gen_privstuff_t triangular_lattice_gen_privstuff_t;
typedef struct {
// public:
points2d_rordered_t ps;
TriangularLatticeOrientation orientation;
double a; // lattice vector length
// not sure if needed:
bool includes_origin;
// private:
triangular_lattice_gen_privstuff_t *priv;
} triangular_lattice_gen_t;
triangular_lattice_gen_t *triangular_lattice_gen_init(double a, TriangularLatticeOrientation ori, bool include_origin);
const points2d_reordered_t * triangular_lattice_gen_getpoints(const triangular lattice_generator_t *g);
int triangular_lattice_gen_extend_to_r(triangular_lattice_generator_t *g, double r);
int triangular_lattice_gen_extend_to_steps(triangular_lattice_generator_t *g, int maxsteps);
void triangular_lattice_gen_free(triangular_lattice_generator_t *g);
#if 0
/*
* HONEYCOMB LATTICE
*/
typedef struct {
} honeycomb_lattice_generator_t;
#endif
#endif // LATTICES_H

113
qpms/lattices2d.c Normal file
View File

@ -0,0 +1,113 @@
#include "lattices.h"
#include <assert.h>
typedef struct {
int i, j;
} intcoord2d;
static inline int sqi(int x) { return x*x; }
/*
* EQUILATERAL TRIANGULAR LATTICE
*/
/*
* N. B. the possible radii (distances from origin) of the lattice points can be described as
*
* r**2 / a**2 == i**2 + j**2 + i*j ,
*
* where i, j are integer indices describing steps along two basis vectors (which have
* 60 degree angle between them).
*
* The plane can be divided into six sextants, characterized as:
*
* 0) i >= 0 && j >= 0,
* [a] i > 0,
* [b] j > 0,
* 1) i <= 0 && {j >= 0} && i + j >= 0,
* [a] i + j > 0,
* [b] i < 0,
* 2) {i <= 0} && j >= 0 && i + j <= 0,
* [a] j > 0,
* [b] i + j < 0,
* 3) i <= 0 && j <= 0,
* [a] i < 0,
* [b] j < 0,
* 4) i >= 0 && {j <= 0} && i + j <= 0,
* [a] i + j < 0,
* [b] i > 0,
* 5) {i >= 0} && j <= 0 && i + j >= 0,
* [a] j < 0,
* [b] i + j > 0.
*
* The [a], [b] are two variants that uniquely assign the points at the sextant boundaries.
* The {conditions} in braces are actually redundant.
*
* In each sextant, the "minimum steps from the origin" value is calculated as:
* 0) i + j,
* 1) j
* 2) -i
* 3) -i - j,
* 4) -j,
* 5) i.
*
* The "spider web" generation for s steps from the origin (s-th layer) goes as following (variant [a]):
* 0) for (i = s, j = 0; i > 0; --i, ++j)
* 1) for (i = 0, j = s; i + j > 0; --i)
* 2) for (i = -s, j = s; j > 0; --j)
* 3) for (i = -s, j = 0; i < 0; ++i, --j)
* 4) for (i = 0, j = -s; i + j < 0; ++i)
* 5) for (i = s, j = -s; j < 0; ++j)
*
*
* Length of the s-th layer is 6*s for s >= 1. Size (number of lattice points) of the whole s-layer "spider web"
* is therefore 3*s*(s+1), excluding origin.
* The real area inside the web is (a*s)**2 * 3 * sqrt(3) / 2.
* Area of a unit cell is a**2 * sqrt(3)/2.
* Inside the web, but excluding the circumscribed circle, there is no more
* than 3/4.*s*(s+1) lattice cells (FIXME pretty stupid but safe estimate).
*
* s-th layer circumscribes a circle of radius a * s * sqrt(3)/2.
*
*/
static inline int trilat_r2_ij(const int i, const int j) {
return sqi(i) + sqi(j) + i*j;
}
// Classify points into sextants (variant [a])
static int trilat_sextant_ij_a(const int i, const int j) {
const int w = i + j;
if (i > 0 && j >= 0) return 0;
if (i <= 0 && w > 0) return 1;
if (w <= 0 && j > 0) return 2;
if (i < 0 && j <= 0) return 3;
if (i >= 0 && w < 0) return 4;
if (w >= 0 && j < 0) return 5;
if (i == 0 && j == 0) return -1; // origin
assert(0); // other options should be impossible
}
typedef struct {
TODO;
} triangular_lattice_gen_t_privstuff_t;
triangular_lattice_gen_t * triangular_lattice_gen_init(double a, TriangularLatticeOrientation ori, bool include_origin)
{
triangular_lattice_gen_t *g = malloc(sizeof(triangular_latice_gen_t));
g->orientation = ori;
g->includes_origin = include_origin;
g->ps.nrs = 0;
g->ps.rs = NULL;
g->ps.points_at_r = NULL;
g->priv = malloc(sizeof(triangular_lattice_gen_privstuff_t));
TODO;
return g;
}