diff --git a/misc/finitesqlat-scatter.py b/misc/finitesqlat-scatter.py index a1ab83b..e85a129 100755 --- a/misc/finitesqlat-scatter.py +++ b/misc/finitesqlat-scatter.py @@ -1,45 +1,34 @@ #!/usr/bin/env python3 -import argparse import math +from qpms.argproc import ArgParser -ap = argparse.ArgumentParser() + +ap = ArgParser(['single_particle', 'single_omega', 'single_lMax']) ap.add_argument("-p", "--period", type=float, required=True, help='square lattice period') ap.add_argument("--Nx", type=int, required=True, help='Array size x') ap.add_argument("--Ny", type=int, required=True, help='Array size y') -ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV') -ap.add_argument("-m", "--material", help='particle material (Au, Ag for Lorentz-Drue or number for constant refractive index)', default='Au', required=True) -ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)') -ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical') ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX')) # ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)") ap.add_argument("--rank-tol", type=float, required=False) -ap.add_argument("-n", "--refractive-index", type=float, default=1.52, help='background medium refractive index') -ap.add_argument("-L", "--lMax", type=int, required=True, default=3, help='multipole degree cutoff') -ap.add_argument("--lMax-extend", type=int, required=False, default=6, help='multipole degree cutoff for T-matrix calculation (cylindrical particles only') ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)') ap.add_argument("-N", type=int, default="151", help="Number of angles") ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)") ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path") +ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep") a=ap.parse_args() -if a.material in ['Ag', 'Au']: - pass -else: - try: lemat = float(a.material) - except ValueError: - try: lemat = complex(a.material) - except ValueError: - raise ValueError("--material must be either one of 'Ag', 'Au' or a number") - a.material = lemat +import logging +logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) + particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9)) -if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e6) +if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9) defaultprefix = "%s_p%gnm_%dx%d_m%s_n%g_angles(%g_%g)_Ey_f%geV_L%d_cn%d" % ( particlestr, a.period*1e9, a.Nx, a.Ny, str(a.material), a.refractive_index, a.kx_lim[0], a.kx_lim[1], a.eV, a.lMax, a.N) -print("Dafault file prefix: %s" % defaultprefix, flush=True) +logging.info("Dafault file prefix: %s" % defaultprefix) import numpy as np @@ -64,28 +53,17 @@ orig_y = (np.arange(a.Ny/2) + (0 if (a.Ny % 2) else .5)) * py orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1) -medium = EpsMu(a.refractive_index**2) -if a.material in lorentz_drude: - emg = EpsMuGenerator(lorentz_drude[a.material]) -else: # constant refractive index - emg = EpsMuGenerator(EpsMu(a.material**2)) - -if a.height is None: - tmgen = TMatrixGenerator.sphere(medium, emg, a.radius) -else: - tmgen = TMatrixGenerator.cylinder(medium, emg, a.radius, a.height, lMax_extend=a.lMax_extend) - -omega = a.eV * eh +omega = ap.omega bspec = BaseSpec(lMax = a.lMax) -Tmatrix = tmgen(bspec, omega) +Tmatrix = ap.tmgen(bspec, ap.omega) particles= [Particle(orig_xy[i], Tmatrix) for i in np.ndindex(orig_xy.shape[:-1])] sym = FinitePointGroup(point_group_info['D2h']) ss = ScatteringSystem(particles, sym) -wavenumber = medium.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber +wavenumber = ap.background_epsmu.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber sinalpha_list = np.linspace(a.kx_lim[0],a.kx_lim[1],a.N) @@ -101,9 +79,16 @@ k_cart_list *= wavenumber σ_ext_list_ir = np.empty((a.N, ss.nirreps), dtype=float) σ_scat_list_ir = np.empty((a.N, ss.nirreps), dtype=float) +outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp" + for iri in range(ss.nirreps): + logging.info("processing irrep %d/%d" % (iri, ss.nirreps)) + LU = None # to trigger garbage collection before the next call + translation_matrix = None LU = ss.scatter_solver(wavenumber,iri) + logging.info("LU solver created") translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri]) + logging.info("auxillary translation matrix created") for j in range(a.N): # the following two could be calculated only once, but probably not a big deal @@ -115,6 +100,11 @@ for iri in range(ss.nirreps): fi = LU(Tãi) σ_ext_list_ir[j, iri] = -np.vdot(ãi, fi).real/wavenumber**2 σ_scat_list_ir[j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2 + if a.save_gradually: + iriout = outfile_tmp + ".%d" % iri + np.savez(iriout, iri=iri, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, + omega=omega, wavenumber=wavenumber, σ_ext_list_ir=σ_ext_list_ir[:,iri], σ_scat_list_ir=σ_scat_list_ir[:,iri]) + logging.info("partial results saved to %s"%iriout) σ_abs_list_ir = σ_ext_list_ir - σ_scat_list_ir σ_abs= np.sum(σ_abs_list_ir, axis=-1) @@ -123,14 +113,17 @@ for iri in range(ss.nirreps): outfile = defaultprefix + ".npz" if a.output is None else a.output -np.savez(outfile, meta=vars(a), k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat, +np.savez(outfile, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat, σ_ext_ir=σ_ext_list_ir,σ_abs_ir=σ_abs_list_ir,σ_scat_ir=σ_scat_list_ir, omega=omega, wavenumber=wavenumber ) -print("Saved to %s" % outfile) +logging.info("Saved to %s" % outfile) if a.plot or (a.plot_out is not None): + import matplotlib + matplotlib.use('pdf') from matplotlib import pyplot as plt + fig = plt.figure() ax = fig.add_subplot(111) ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$') diff --git a/qpms/argproc.py b/qpms/argproc.py new file mode 100644 index 0000000..eaacd2b --- /dev/null +++ b/qpms/argproc.py @@ -0,0 +1,102 @@ +''' +Common snippets for argument processing in command line scripts; legacy scripts use scripts_common.py instead. +''' + +import argparse + +class ArgParser: + ''' Common argument parsing engine for QPMS python CLI scripts. ''' + atomic_arguments = { + 'sqlat_period': lambda ap: ap.add_argument("-p", "--period", type=float, required=True, help='square lattice period'), + 'rectlat_Nx': lambda ap: ap.add_argument("--Nx", type=int, required=True, help='array size x'), + 'rectlat_Ny': lambda ap: ap.add_argument("--Ny", type=int, required=True, help='array size y'), + 'single_frequency_eV': lambda ap: ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV'), + 'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', default='Au', required=True), + 'single_radius': lambda ap: ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)'), + 'single_height': lambda ap: ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical'), + 'single_kvec2': lambda ap: ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX')), + 'kpi': lambda ap: ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)"), + 'bg_refractive_index': lambda ap: ap.add_argument("-n", "--refractive-index", type=float, default=1.52, help='background medium refractive index'), + 'single_lMax': lambda ap: ap.add_argument("-L", "--lMax", type=int, required=True, default=3, help='multipole degree cutoff'), + 'single_lMax_extend': lambda ap: ap.add_argument("--lMax-extend", type=int, required=False, default=6, help='multipole degree cutoff for T-matrix calculation (cylindrical particles only'), + 'outfile': lambda ap: ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)'), + 'plot_out': lambda ap: ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)"), + 'plot_do': lambda ap: ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path"), + } + + feature_sets_available = { # name : (description, dependencies, atoms not in other dependencies, methods called after parsing) + 'background': ("Background medium definition (currently only constant epsilon supported)", (), ('bg_refractive_index',), ('_eval_background_epsmu',)), + 'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',)), + 'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), ()), + 'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',)), + } + + + def __init__(self, features=[]): + self.ap = argparse.ArgumentParser() + self.features_enabled = set() + self.call_at_parse_list = [] + self.parsed = False + for feat in features: + self.add_feature(feat) + + def add_feature(self, feat): + if feat not in self.features_enabled: + if feat not in ArgParser.feature_sets_available: + raise ValueError("Unknown ArgParser feature: %s", feat) + #resolve dependencies + _, deps, atoms, atparse = ArgParser.feature_sets_available[feat] + for dep in deps: + self.add_feature(dep) + for atom in atoms: # maybe check whether that atom has already been added sometimes in the future? + ArgParser.atomic_arguments[atom](self.ap) + for methodname in atparse: + self.call_at_parse_list.append(methodname) + self.features_enabled.add(feat) + + def add_argument(self, *args, **kwargs): + '''Add a custom argument directly to the standard library ArgParser object''' + self.ap.add_argument(*args, **kwargs) + + def parse_args(self, process_data = True, *args, **kwargs): + self.args = self.ap.parse_args(*args, **kwargs) + if process_data: + for method in self.call_at_parse_list: + getattr(self, method)() + return self.args + + def __getattr__(self, name): + return getattr(self.args, name) + + + # Methods to initialise the related data structures: + + def _eval_background_epsmu(self): # feature: background + from .cymaterials import EpsMu + self.background_epsmu = EpsMu(self.args.refractive_index**2) + + def _eval_single_tmgen(self): # feature: single_particle + a = self.args + from .cymaterials import EpsMuGenerator, lorentz_drude + from .cytmatrices import TMatrixGenerator + if a.material in lorentz_drude.keys(): + self.foreground_emg = EpsMuGenerator(lorentz_drude[a.material]) + else: + try: lemat = float(a.material) + except ValueError: + try: lemat = complex(a.material) + except ValueError as ve: + raise ValueError("--material must be either a label such as 'Ag', 'Au', or a number") from ve + a.material = lemat + self.foreground_emg = EpsMuGenerator(EpsMu(a.material**2)) + + if a.height is None: + self.tmgen = TMatrixGenerator.sphere(self.background_epsmu, self.foreground_emg, a.radius) + else: + self.tmgen = TMatrixGenerator.cylinder(self.background_epsmu, self.foreground_emg, a.radius, a.height, lMax_extend = a.lMax_extend) + + def _eval_single_omega(self): # feature: single_omega + from .constants import eV, hbar + self.omega = self.args.eV * eV / hbar + + diff --git a/qpms/constants.py b/qpms/constants.py index 21280dc..bbdcec6 100644 --- a/qpms/constants.py +++ b/qpms/constants.py @@ -1,6 +1,6 @@ # unit conversions, mostly for standalone usage # TODO avoid importing the "heavy" qpms parts -from scipy.constants import epsilon_0 as ε_0, c, pi as π, e as eV, hbar as ℏ, mu_0 as μ_0 +from scipy.constants import epsilon_0 as ε_0, c, pi as π, e as eV, hbar, hbar as ℏ, mu_0 as μ_0 pi = π μm = 1e-6 nm = 1e-9 diff --git a/qpms/scripts_common.py b/qpms/scripts_common.py index c7da2f9..e744800 100644 --- a/qpms/scripts_common.py +++ b/qpms/scripts_common.py @@ -1,3 +1,6 @@ +''' +Mostly legacy code; new scripts use mostly argproc.py +''' import warnings import argparse #import sys # for debugging purpose, TODO remove in production