Incomplete gamma functions for complex second arguments (needed in
Ewald summation) Former-commit-id: 409630d01d58f8f4e69dceb3cd59af22576acc41
This commit is contained in:
parent
5b1c1a2b27
commit
f273a46a9a
|
@ -0,0 +1,31 @@
|
|||
#ifndef EWALD_H
|
||||
#define EWALD_H
|
||||
#include <gsl/gsl_sf_result.h>
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
|
||||
typedef struct { // as gsl_sf_result, but with complex val
|
||||
complex double val;
|
||||
double err;
|
||||
} qpms_csf_result;
|
||||
|
||||
|
||||
// Linton&Thompson (A.9)
|
||||
// TODO put into a header file as inline
|
||||
static inline complex double lilgamma(double t) {
|
||||
t = fabs(t);
|
||||
if (t >= 1)
|
||||
return sqrt(t*t - 1);
|
||||
else
|
||||
return -I * sqrt(1 - t*t);
|
||||
}
|
||||
|
||||
|
||||
// DLMF 8.7.3 (latter expression) for complex second argument
|
||||
int cx_gamma_inc_series_e(double a, complex z, qpms_csf_result * result);
|
||||
|
||||
// incomplete gamma for complex second argument
|
||||
// if x is (almost) real, it just uses gsl_sf_gamma_inc_e
|
||||
int complex_gamma_inc_e(double a, complex double x, qpms_csf_result *result);
|
||||
|
||||
#endif //EWALD_H
|
|
@ -0,0 +1,78 @@
|
|||
#include "ewald.h"
|
||||
#include <gsl/gsl_sf_gamma.h>
|
||||
#include <gsl/gsl_sf_result.h>
|
||||
#include "kahansum.h"
|
||||
#include <math.h>
|
||||
#include <complex.h>
|
||||
//#include <gsl/gsl_integration.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <float.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifndef COMPLEXPART_REL_ZERO_LIMIT
|
||||
#define COMPLEXPART_REL_ZERO_LIMIT 1e-14
|
||||
#endif
|
||||
|
||||
// DLMF 8.7.3 (latter expression) for complex second argument
|
||||
// BTW if a is large negative, it might take a while to evaluate.
|
||||
int cx_gamma_inc_series_e(double a, complex z, qpms_csf_result * result) {
|
||||
if (a <= 0 && a == (int) a) {
|
||||
result->val = NAN + NAN*I;
|
||||
result->err = NAN;
|
||||
GSL_ERROR("Undefined for non-positive integer values", GSL_EDOM);
|
||||
}
|
||||
gsl_sf_result fullgamma;
|
||||
int retval;
|
||||
if (GSL_SUCCESS != (retval = gsl_sf_gamma_e(a, &fullgamma))){
|
||||
result->val = NAN + NAN*I; result->err = NAN;
|
||||
return retval;
|
||||
}
|
||||
|
||||
complex double sumprefac = cpow(z, a) * cexp(-z);
|
||||
double sumprefac_abs = cabs(sumprefac_abs);
|
||||
complex double sum, sumc; ckahaninit(&sum, &sumc);
|
||||
double err, errc; kahaninit(&err, &errc);
|
||||
|
||||
bool breakswitch = false;
|
||||
for (int k = 0; (!breakswitch) && (a + k + 1 <= GSL_SF_GAMMA_XMAX); ++k) {
|
||||
gsl_sf_result fullgamma_ak;
|
||||
if (GSL_SUCCESS != (retval = gsl_sf_gamma_e(a+k+1, &fullgamma_ak))) {
|
||||
result->val = NAN + NAN*I; result->err = NAN;
|
||||
return retval;
|
||||
}
|
||||
complex double summand = - cpow(z, k) / fullgamma_ak.val;
|
||||
ckahanadd(&sum, &sumc, summand);
|
||||
double summanderr = fabs(fullgamma_ak.err * cabs(summand / fullgamma_ak.val));
|
||||
// TODO add also the rounding error
|
||||
kahanadd(&err, &errc, summanderr);
|
||||
// TODO put some smarter cutoff break here?
|
||||
if (a + k >= 18 && (cabs(summand) < err || cabs(summand) < DBL_EPSILON))
|
||||
breakswitch = true;
|
||||
}
|
||||
sum *= sumprefac; // Not sure if not breaking the Kahan summation here
|
||||
sumc *= sumprefac;
|
||||
err *= sumprefac_abs;
|
||||
errc *= sumprefac_abs;
|
||||
ckahanadd(&sum, &sumc, 1.);
|
||||
kahanadd(&err, &errc, DBL_EPSILON);
|
||||
result->err = cabs(sum) * fullgamma.err + err * fullgamma.val;
|
||||
result->val = sum * fullgamma.val; // + sumc*fullgamma.val???
|
||||
if (breakswitch)
|
||||
return GSL_SUCCESS;
|
||||
else GSL_ERROR("Overflow; the absolute value of the z argument is probably too large.", GSL_ETOL); // maybe different error code...
|
||||
}
|
||||
|
||||
|
||||
// incomplete gamma for complex second argument
|
||||
int complex_gamma_inc_e(double a, complex double x, qpms_csf_result *result) {
|
||||
if (0 == fabs(cimag(x)) && // x is real; just use the real fun
|
||||
fabs(cimag(x)) < fabs(creal(x)) * COMPLEXPART_REL_ZERO_LIMIT) {
|
||||
gsl_sf_result real_gamma_inc_result;
|
||||
int retval = gsl_sf_gamma_inc_e(a, x, &real_gamma_inc_result);
|
||||
result->val = real_gamma_inc_result.val;
|
||||
result->err = real_gamma_inc_result.err;
|
||||
return retval;
|
||||
} else
|
||||
return cx_gamma_inc_series_e(a, x, result);
|
||||
}
|
||||
|
Loading…
Reference in New Issue