Fix formula in notes; axial T-matrix WIP
Former-commit-id: a94506c8f40e20b425167bc56fd632cfde335a7a
This commit is contained in:
parent
beef0ea9b8
commit
f5288318bf
|
@ -111,8 +111,8 @@ literal "false"
|
||||||
:
|
:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
R_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k\vect r\right)+\wfkcreg_{\overline{n'}}\left(k\vect r\right)\times\wfkcreg_{n}\left(k\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,\\
|
R_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,\\
|
||||||
Q_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcout_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k\vect r\right)+\wfkcout_{\overline{n'}}\left(k\vect r\right)\times\wfkcreg_{n}\left(k\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,
|
Q_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcout_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcout_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -121,11 +121,15 @@ where
|
||||||
\begin_inset Formula $S_{s}$
|
\begin_inset Formula $S_{s}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the scatterer surface and
|
is the scatterer surface,
|
||||||
\begin_inset Formula $\uvec{\nu}$
|
\begin_inset Formula $\uvec{\nu}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the outwards pointing unit normal to it; then
|
is the outwards pointing unit normal to it, and the subscript
|
||||||
|
\begin_inset Formula $_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
refers to the particle inside; then
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.
|
T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.
|
||||||
|
|
|
@ -609,7 +609,24 @@ qpms_arc_function_retval_t qpms_arc_cylinder(double theta, const void *param) {
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct tmatrix_axialsym_integral_param_t {
|
||||||
|
const qpms_vswf_set_spec_t *bspec;
|
||||||
|
qpms_l_t l1, l2;
|
||||||
|
qpms_m_t m1; // m2 = -m1
|
||||||
|
qpms_vswf_type_t t1; // t2 = 2 - t1
|
||||||
|
qpms_arc_function_t f;
|
||||||
|
complex double k_in, k, z_in, z;
|
||||||
|
bool realpart; // Otherwise imaginary part
|
||||||
|
bool Q; // Otherwise R
|
||||||
|
};
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
static double tmatrix_axialsym_integrand(double theta, void *param) {
|
||||||
|
struct tmatrix_axialsym_integral_param_t *p = param;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
qpms_errno_t qpms_tmatrix_axialsym_fill(
|
qpms_errno_t qpms_tmatrix_axialsym_fill(
|
||||||
qpms_tmatrix_t *t, complex double omega, qpms_epsmu_generator_t outside,
|
qpms_tmatrix_t *t, complex double omega, qpms_epsmu_generator_t outside,
|
||||||
qpms_epsmu_generator_t inside,qpms_arc_function_t shape)
|
qpms_epsmu_generator_t inside,qpms_arc_function_t shape)
|
||||||
|
|
Loading…
Reference in New Issue