diff --git a/notes/ewald.lyx b/notes/ewald.lyx index b0c27c6..a51bccb 100644 --- a/notes/ewald.lyx +++ b/notes/ewald.lyx @@ -122,6 +122,21 @@ \end_inset +\begin_inset FormulaMacro +\newcommand{\usht}[2]{\mathbb{S}_{#1}#2} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2} +\end_inset + + \begin_inset FormulaMacro \newcommand{\vect}[1]{\mathbf{#1}} \end_inset @@ -162,6 +177,11 @@ \end_inset +\begin_inset FormulaMacro +\newcommand{\ush}[2]{Y_{#1,#2}} +\end_inset + + \end_layout \begin_layout Title @@ -623,7 +643,7 @@ The translation operator for compact scatterers in 3d can be expressed as \begin_inset Formula \[ -S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}Y_{p,m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right) +S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right) \] \end_inset @@ -640,25 +660,146 @@ where \begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$ \end_inset - are some ugly but known coefficients (Xu 1996, eqs. + are some ugly but known coefficients (REF Xu 1996, eqs. 76,77). \end_layout \begin_layout Section -(Appendix) Hankel transform +(Appendix) Fourier vs. + Hankel transform +\end_layout + +\begin_layout Subsection +Three dimensions \end_layout \begin_layout Standard -Acording to (Baddour 2010, eq. - 13) (CHECK FACTORS) +Given a nice enough function +\begin_inset Formula $f$ +\end_inset + + of a real 3d variable, assume its factorisation into radial and angular + parts \begin_inset Formula \[ -\uaft f(\vect k)= +f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right). \] \end_inset +Acording to (REF Baddour 2010, eqs. + 13, 16), its Fourier transform can then be expressed in terms of Hankel + transforms (CHECK normalisation of +\begin_inset Formula $j_{n}$ +\end_inset +, REF Baddour (1)) +\begin_inset Formula +\[ +\uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right) +\] + +\end_inset + +where the spherical Hankel transform +\begin_inset Formula $\bsht l{}$ +\end_inset + + of degree +\begin_inset Formula $l$ +\end_inset + + is defined as (REF Baddour eq. + 2) +\begin_inset Formula +\[ +\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). +\] + +\end_inset + +Using this convention, the inverse spherical Hankel transform is given by + (REF Baddour eq. + 3) +\begin_inset Formula +\[ +g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), +\] + +\end_inset + +so it is not unitary. + +\end_layout + +\begin_layout Standard +An unitary convention would look like this: +\begin_inset Formula +\[ +\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). +\] + +\end_inset + +Then +\begin_inset Formula $\usht l{}^{-1}=\usht l{}$ +\end_inset + + and the unitary, angular-momentum Fourier transform reads +\begin_inset Formula +\begin{eqnarray*} +\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\ + & = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right). +\end{eqnarray*} + +\end_inset + +Cool. +\end_layout + +\begin_layout Subsection +Two dimensions +\end_layout + +\begin_layout Standard +Similarly in 2d, let the expansion of +\begin_inset Formula $f$ +\end_inset + + be +\begin_inset Formula +\[ +f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}}, +\] + +\end_inset + +its Fourier transform is then (CHECK this, it is taken from the Wikipedia + article on Hankel transform) +\begin_inset Formula +\[ +\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right) +\] + +\end_inset + +where the Hankel transform of order +\begin_inset Formula $m$ +\end_inset + + is defined as +\begin_inset Formula +\[ +\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r +\] + +\end_inset + +which is already self-inverse, +\begin_inset Formula $\pht m{}^{-1}=\pht m{}$ +\end_inset + + (hence also unitary). \end_layout \begin_layout Section