Fix eq. (2.19); typography
Former-commit-id: 13ff4d97953d74878fcd16c1b2e581fb4284fc65
This commit is contained in:
parent
31f8eda4d2
commit
f756592bc5
|
@ -55,8 +55,8 @@ figs-within-sections
|
|||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize a4paper
|
||||
\use_geometry true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 2
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
|
|
|
@ -605,7 +605,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
inside a ball
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
with radius
|
||||
|
@ -615,7 +615,7 @@ noprefix "false"
|
|||
and center in the origin, were it filled with homogeneous isotropic medium;
|
||||
however, if the equation is not guaranteed to hold inside a smaller ball
|
||||
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
around the origin (typically due to presence of a scatterer), one has to
|
||||
|
@ -624,7 +624,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -646,11 +646,11 @@ The single-particle scattering problem at frequency
|
|||
\end_inset
|
||||
|
||||
can be posed as follows: Let a scatterer be enclosed inside the ball
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
and let the whole volume
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
be filled with a homogeneous isotropic medium with wave number
|
||||
|
@ -659,7 +659,7 @@ The single-particle scattering problem at frequency
|
|||
|
||||
.
|
||||
Inside
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
, the electric field can be expanded as
|
||||
|
@ -681,7 +681,7 @@ doplnit frekvence a polohy
|
|||
\end_inset
|
||||
|
||||
If there were no scatterer and
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect0}$
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
were filled with the same homogeneous medium, the part with the outgoing
|
||||
|
@ -690,7 +690,7 @@ If there were no scatterer and
|
|||
\end_inset
|
||||
|
||||
due to sources outside
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect0}$
|
||||
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
would remain.
|
||||
|
@ -1751,7 +1751,7 @@ Let
|
|||
\begin_inset Formula $\vect r_{1}$
|
||||
\end_inset
|
||||
|
||||
can be always expanded in terms of regular VSWFs with origin
|
||||
can be expanded in terms of regular VSWFs with origin
|
||||
\begin_inset Formula $\vect r_{2}$
|
||||
\end_inset
|
||||
|
||||
|
@ -1786,12 +1786,13 @@ reference "eq:translation operator"
|
|||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||||
\begin{multline}
|
||||
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\\
|
||||
=\begin{cases}
|
||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{1}-\vect r_{2}\right\Vert }{\vect r_{2}}\\
|
||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{1}-\vect r_{2}\right\Vert }{\vect r_{2}}
|
||||
\end{cases},\label{eq:singular vswf translation}
|
||||
\end{eqnarray}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -2037,7 +2038,11 @@ status collapsed
|
|||
|
||||
\end_inset
|
||||
|
||||
where the constant factors in our convention read
|
||||
where the constant factors in our convention read
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -2048,6 +2053,11 @@ TODO check once again carefully for possible phase factors.
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
|
|
|
@ -2514,10 +2514,10 @@ TODO fix signs and exponential phase factors
|
|||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\nonumber \\
|
||||
& =\sum_{\alpha\in\mathcal{P}_{1}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\vswfrtlm 21{m'}\left(0\right)\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(-\vect k,\vect r-\vect r_{\alpha}\right).\label{eq:Scattered fields in periodic systems}
|
||||
\end{align}
|
||||
\begin{multline}
|
||||
\vect E_{\mathrm{scat}}\left(\vect r\right)=\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)=\\
|
||||
=\sum_{\alpha\in\mathcal{P}_{1}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\vswfrtlm 21{m'}\left(0\right)\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(-\vect k,\vect r-\vect r_{\alpha}\right).\label{eq:Scattered fields in periodic systems}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
|
Loading…
Reference in New Issue