Fix eq. (2.19); typography

Former-commit-id: 13ff4d97953d74878fcd16c1b2e581fb4284fc65
This commit is contained in:
Marek Nečada 2020-06-22 16:00:18 +03:00
parent 31f8eda4d2
commit f756592bc5
3 changed files with 31 additions and 21 deletions

View File

@ -55,8 +55,8 @@ figs-within-sections
\pdf_colorlinks false \pdf_colorlinks false
\pdf_backref false \pdf_backref false
\pdf_pdfusetitle true \pdf_pdfusetitle true
\papersize a4paper \papersize default
\use_geometry true \use_geometry false
\use_package amsmath 2 \use_package amsmath 2
\use_package amssymb 1 \use_package amssymb 1
\use_package cancel 1 \use_package cancel 1

View File

@ -605,7 +605,7 @@ noprefix "false"
\end_inset \end_inset
inside a ball inside a ball
\begin_inset Formula $\openball{R^{>}}{\vect0}$ \begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset \end_inset
with radius with radius
@ -615,7 +615,7 @@ noprefix "false"
and center in the origin, were it filled with homogeneous isotropic medium; and center in the origin, were it filled with homogeneous isotropic medium;
however, if the equation is not guaranteed to hold inside a smaller ball however, if the equation is not guaranteed to hold inside a smaller ball
\begin_inset Formula $\closedball{R^{<}}{\vect0}$ \begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset \end_inset
around the origin (typically due to presence of a scatterer), one has to around the origin (typically due to presence of a scatterer), one has to
@ -624,7 +624,7 @@ noprefix "false"
\end_inset \end_inset
to have a complete basis of the solutions in the volume to have a complete basis of the solutions in the volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}=\openball{R^{>}}{\vect0}\setminus\closedball{R^{<}}{\vect0}$ \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
\end_inset \end_inset
. .
@ -646,11 +646,11 @@ The single-particle scattering problem at frequency
\end_inset \end_inset
can be posed as follows: Let a scatterer be enclosed inside the ball can be posed as follows: Let a scatterer be enclosed inside the ball
\begin_inset Formula $\closedball{R^{<}}{\vect0}$ \begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset \end_inset
and let the whole volume and let the whole volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$ \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset \end_inset
be filled with a homogeneous isotropic medium with wave number be filled with a homogeneous isotropic medium with wave number
@ -659,7 +659,7 @@ The single-particle scattering problem at frequency
. .
Inside Inside
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect0}$ \begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset \end_inset
, the electric field can be expanded as , the electric field can be expanded as
@ -681,7 +681,7 @@ doplnit frekvence a polohy
\end_inset \end_inset
If there were no scatterer and If there were no scatterer and
\begin_inset Formula $\closedball{R^{<}}{\vect0}$ \begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset \end_inset
were filled with the same homogeneous medium, the part with the outgoing were filled with the same homogeneous medium, the part with the outgoing
@ -690,7 +690,7 @@ If there were no scatterer and
\end_inset \end_inset
due to sources outside due to sources outside
\begin_inset Formula $\openball{R^{>}}{\vect0}$ \begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset \end_inset
would remain. would remain.
@ -1751,7 +1751,7 @@ Let
\begin_inset Formula $\vect r_{1}$ \begin_inset Formula $\vect r_{1}$
\end_inset \end_inset
can be always expanded in terms of regular VSWFs with origin can be expanded in terms of regular VSWFs with origin
\begin_inset Formula $\vect r_{2}$ \begin_inset Formula $\vect r_{2}$
\end_inset \end_inset
@ -1786,12 +1786,13 @@ reference "eq:translation operator"
: :
\begin_inset Formula \begin_inset Formula
\begin{eqnarray} \begin{multline}
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases} \vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\\
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\ =\begin{cases}
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|} \sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{1}-\vect r_{2}\right\Vert }{\vect r_{2}}\\
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{1}-\vect r_{2}\right\Vert }{\vect r_{2}}
\end{cases},\label{eq:singular vswf translation} \end{cases},\label{eq:singular vswf translation}
\end{eqnarray} \end{multline}
\end_inset \end_inset
@ -2037,7 +2038,11 @@ status collapsed
\end_inset \end_inset
where the constant factors in our convention read where the constant factors in our convention read
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal \begin_inset Marginal
status open status open
@ -2048,6 +2053,11 @@ TODO check once again carefully for possible phase factors.
\end_inset \end_inset
\end_layout
\end_inset
\begin_inset Note Note \begin_inset Note Note
status collapsed status collapsed

View File

@ -2514,10 +2514,10 @@ TODO fix signs and exponential phase factors
\begin_inset Formula \begin_inset Formula
\begin{align} \begin{multline}
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\nonumber \\ \vect E_{\mathrm{scat}}\left(\vect r\right)=\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)=\\
& =\sum_{\alpha\in\mathcal{P}_{1}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\vswfrtlm 21{m'}\left(0\right)\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(-\vect k,\vect r-\vect r_{\alpha}\right).\label{eq:Scattered fields in periodic systems} =\sum_{\alpha\in\mathcal{P}_{1}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\vswfrtlm 21{m'}\left(0\right)\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(-\vect k,\vect r-\vect r_{\alpha}\right).\label{eq:Scattered fields in periodic systems}
\end{align} \end{multline}
\end_inset \end_inset