Progress on lattices2d.py; dudom

Former-commit-id: 0b9f718ce5cfff12f1d044dbf995f51092daf76b
This commit is contained in:
Marek Nečada 2017-07-11 16:17:33 +03:00
parent 97648ce214
commit f925f2163d
1 changed files with 103 additions and 44 deletions

View File

@ -1,6 +1,9 @@
import numpy as np import numpy as np
import warnings
from enum import Enum from enum import Enum
nx = None
class LatticeType(Enum): class LatticeType(Enum):
""" """
All the five Bravais lattices in 2D All the five Bravais lattices in 2D
@ -19,16 +22,19 @@ class LatticeType(Enum):
RIGHT_ISOSCELE_TRIANGULAR=SQUARE RIGHT_ISOSCELE_TRIANGULAR=SQUARE
HEXAGONAL=EQUILATERAL_TRIANGULAR HEXAGONAL=EQUILATERAL_TRIANGULAR
def reduceBasisSingle(b1, b2): def reduceBasisSingle(b1, b2):
""" """
Lagrange-Gauss reduction of a 2D basis. Lagrange-Gauss reduction of a 2D basis.
cf. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch17.pdf cf. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch17.pdf
TODO doc
inputs and outputs are (2,)-shaped numpy arrays inputs and outputs are (2,)-shaped numpy arrays
The output shall satisfy |b1| <= |b2| <= |b2 - b1|
TODO doc
TODO perhaps have the (on-demand?) guarantee of obtuse angle between b1, b2?
TODO possibility of returning the (in-order, no-obtuse angles) b as well?
""" """
b1 = np.array(b1)
b2 = np.array(b2)
if b1.shape != (2,) or b2.shape != (2,): if b1.shape != (2,) or b2.shape != (2,):
raise ValueError('Shape of b1 and b2 must be (2,)') raise ValueError('Shape of b1 and b2 must be (2,)')
B1 = np.sum(b1 * b1, axis=-1, keepdims=True) B1 = np.sum(b1 * b1, axis=-1, keepdims=True)
@ -43,7 +49,29 @@ def reduceBasisSingle(b1, b2):
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1 mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
b2 = b2 - np.rint(mu) * b1 b2 = b2 - np.rint(mu) * b1
B2 = np.sum(b2*b2, axis=-1, keepdims=True) B2 = np.sum(b2*b2, axis=-1, keepdims=True)
return (b1,b2) return(b1,b2)
def orderedReducedBasis(b1, b2):
''' blah blab blah
|b1| is still the shortest possible basis vector,
but if there would be obtuse angle between b1 and b2, b2 - b1 is returned
in place of the original b2. In other words, b1, b2 and b2-b1 are
'''
b1, b2 = reduceBasisSingle(b1,b2)
if b3s - b2s - b1s > eps: # obtuse angle between b1 and b2
pass
pass
#-------- zde jsem skončil ------------
def is_obtuse(b1, b2, tolerance=1e-13):
b1s = np.sum(b1 ** 2)
b2s = np.sum(b2 ** 2)
b3 = b2 - b1
b3s = np.sum(b3 ** 2)
eps = tolerance * (b2s + b1s)
return (b3s - b2s - b1s > eps)
def classifyLatticeSingle(b1, b2, tolerance=1e-13): def classifyLatticeSingle(b1, b2, tolerance=1e-13):
""" """
@ -57,15 +85,17 @@ def classifyLatticeSingle(b1, b2, tolerance=1e-13):
b3 = b2 - b1 b3 = b2 - b1
b3s = np.sum(b3 ** 2) b3s = np.sum(b3 ** 2)
eps = tolerance * (b2s + b1s) eps = tolerance * (b2s + b1s)
# avoid obtuse angle between b1 and b2 # Avoid obtuse angle between b1 and b2. TODO This should be yet thoroughly tested.
if b3s - b2s - b1s < eps: # TODO use is_obtuse here?
if b3s - b2s - b1s > eps:
b3 = b2
b2 = b2 + b1 b2 = b2 + b1
# N. B. now the assumption |b3| >= |b2| is no longer valid
#b3 = b2 - b1
b2s = np.sum(b2 ** 2) b2s = np.sum(b2 ** 2)
b3 = b2 - b1
b3s = np.sum(b3 ** 2) b3s = np.sum(b3 ** 2)
# This will, however, probably not happen due to the basis reduction warnings.warn("obtuse angle between reduced basis vectors, the lattice type identification might is not well tested.")
print (sys.stderr, "it happened, obtuse angle!") if abs(b2s - b1s) < eps or abs(b2s - b3s) < eps: # isoscele
if abs(b2s - b1s) < eps: # isoscele
if abs(b3s - b1s) < eps: if abs(b3s - b1s) < eps:
return LatticeType.EQUILATERAL_TRIANGULAR return LatticeType.EQUILATERAL_TRIANGULAR
elif abs(b3s - 2 * b1s) < eps: elif abs(b3s - 2 * b1s) < eps:
@ -73,7 +103,7 @@ def classifyLatticeSingle(b1, b2, tolerance=1e-13):
else: else:
return LatticeType.RHOMBIC return LatticeType.RHOMBIC
elif abs(b3s - b2s - b1s) < eps: elif abs(b3s - b2s - b1s) < eps:
return LatticeType.SQUARE return LatticeType.RECTANGULAR
else: else:
return LatticeType.OBLIQUE return LatticeType.OBLIQUE
@ -88,6 +118,41 @@ def range2D(maxN, mini=1, minj=0, minN = 0):
for i in range(mini, maxn + 1): for i in range(mini, maxn + 1):
yield (i, maxn - i) yield (i, maxn - i)
def generateLattice(b1, b2, maxlayer=5, include_origin=False, order='leaves'):
b1, b2 = reduceBasisSingle(b1, b2)
latticeType = classifyLatticeSingle(b1, b2)
if latticeType is LatticeType.RECTANGULAR or latticeType is LatticeType.SQUARE:
bvs = (b1, b2, -b1, -b2)
else:
# Avoid obtuse angle between b1 and b2. TODO This should be yet thoroughly tested.
if is_obtuse(b1,b2):
b3 = b2
b2 = b2 + b1
# N. B. now the assumption |b3| >= |b2| is no longer valid
warnings.warn("obtuse angle between reduced basis vectors, the lattice generation might is not well tested.")
else:
b3 = b2 - b1
bvs = (b1, b2, b3, -b1, -b2, -b3)
cc = len(bvs) # "corner count"
if order == 'leaves':
indices = np.array(list(range2D(maxlayer)))
ia = indices[:,0]
ib = indices[:,1]
cc = len(bvs) # 4 for square/rec,
leaves = list()
if include_origin: leaves.append(np.array([[0,0]]))
for c in range(cc):
ba = bvs[c]
bb = bvs[(c+1)%cc]
leaves.append(ia[:,nx]*ba + ib[:,nx]*bb)
return np.concatenate(leaves)
else:
raise ValueError('Lattice point order not implemented: ', order)
def cellCornersWS(b1, b2,): def cellCornersWS(b1, b2,):
""" """
Given basis vectors, returns the corners of the Wigner-Seitz unit cell Given basis vectors, returns the corners of the Wigner-Seitz unit cell
@ -115,38 +180,32 @@ def cellCornersWS(b1, b2,):
else: else:
b3 = b2 - b1 b3 = b2 - b1
bvs = (b1, b2, b3, -b1, -b2, -b3) bvs = (b1, b2, b3, -b1, -b2, -b3)
return np.array([solveWS(bvs[i], bvs[(i+1)%6]] for i in range(6)]) return np.array([solveWS(bvs[i], bvs[(i+1)%6]) for i in range(6)])
def cutWS(points, b1, b2, scale=1.):
"""
From given points, return only those that are inside (or on the edge of)
the Wigner-Seitz cell of a (scale*b1, scale*b2)-based lattice.
"""
# TODO check input dimensions?
b1, b2 = reduceBasisSingle(b1, b2)
b3 = b2 - b1
bvs = (b1, b2, b3, -b1, -b2, -b3)
points = np.array(points)
for b in bvs:
mask = (np.tensordot(points, b, axes=(-1, 0)) <= np.linalg.norm(b, ord=2) * scale/2)
points = points[mask]
return points
def filledWS(b1, b2, density=10, scale=1.):
"""
TODO doc
TODO more intelligent generation, anisotropy balancing etc.
"""
b1, b2 = reduceBasisSingle(b1, b2)
pass
"""
TODO pro všechny rozptylové a modální simulace
Implementovat podporu následujících parametrů (v závorce implicitní hodnota):
--bz_coverage (1.):
základní rozsah rovnoběžné části vlnového vektoru relativně k délce 1. BZ.
Ve výchozím nastavení právě 1. BZ (tj. Wignerova-Seitzova
buňka v převráceném prostoru)
--k_density (50.):
základní počet bodů mezi středem a okrajem 1. BZ
--bz_edge_width (0.):
poloměr (relativně k vzdáleností mezi okrajem a středem 1. BZ) zhuštěného pásu kolem okraje 1. BZ
--bz_edge_factor (8.):
relativní hustota zhuštěného pásu (vzhledem k k_density)
--bz_corner_width (0.):
velikost zhuštěné oblasti kolem vrcholů 1. BZ (relativně k velikosti BZ)
--bz_corner_factor (16.):
relativní hustota zhuštěné buněčky kolem 1. BZ (vzhledem k k_density)
--bz_centre_width (0.):
totéž kolem středu BZ
--bz_centre_factor (8):
totéž kolem středu BZ
--bz_edge_twoside (?),
--bz_corner_twoside (?):
zda s pásem zasahovat přes okraj 1. BZ, nebo jen dovnitř
(nehoří) výhledově pořešit problém hodně anisotropních mřížek (tj. kompensovat
rozdílné délky základních vektorů).
"""
def reciprocalBasis(a1, a2):
pass